Advertisement

Image Denoising Using Bilateral Filter in High Dimensional PCA-Space

  • Quoc Bao Do
  • Azeddine Beghdadi
  • Marie Luong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6855)

Abstract

This paper proposes a new noise filtering method inspired by Bilateral filter (BF), non-local means (NLM) filter and principal component analysis (PCA). The main idea here is to perform the BF in a multidimensional PCA-space using an anisotropic kernel. The filtered multidimensional signal is then transformed back onto the image spatial domain to yield the desired enhanced image. The proposed method is compared to the state-of-art. The obtained results are highly promising.

Keywords

Denoising Bilateral filter Non-local means High dimensional space PCA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barash, D., Comaniciu, D.: A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Image Vision Comput., 73–81 (2004)Google Scholar
  2. 2.
    Beghdadi, A., Pesquet-Popescu, B.: A new image distortion measure based wavelet decomposition. In: Proc. ISSPA, pp. 485–488 (2003)Google Scholar
  3. 3.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Simul 4, 490–530 (2005)zbMATHGoogle Scholar
  4. 4.
    Buades, A., Coll, B., Morel, J.M.: Nonlocal image and movie denoising. International Journal of Computer Vision, 123–139 (2008)Google Scholar
  5. 5.
    Do, Q.B., Beghdadi, A., Luong, M.: Combination of closest space and closest structure to ameliorate non-local means method. In: IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (2011)Google Scholar
  6. 6.
    Elad, M.: On the origin of the bilateral filter and ways to improve it. IEEE Transactions on Image Processing, 1141–1151 (2002)Google Scholar
  7. 7.
    Kervrann, C., Boulanger, J.: Optimal spatial adaptation for patch-based image denoising. IEEE Trans. on Image Processing 15(10), 2866–2878 (2006)CrossRefGoogle Scholar
  8. 8.
    Larson, E.C., Chandler, D.M.: Most apparent distortion: full-reference image quality assessment and the role of strategy. Journal of Electronic Imaging 19 (2010)Google Scholar
  9. 9.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear Total Variation Based Noise Removal Algorithms. Physica D 60, 259–268 (1992)CrossRefzbMATHGoogle Scholar
  10. 10.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell., 629–639 (1990)Google Scholar
  11. 11.
    Souidene, W., Beghdadi, A., Abed-Meraim, K.: Image denoising in the transformed domain using non local neighborhood. In: Proc. ICASSP (2006)Google Scholar
  12. 12.
    Tasdizen, T.: Principal neighborhood dictionaries for nonlocal means image denoising. IEEE Transactions on Image Processing, 2649–2660 (2009)Google Scholar
  13. 13.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images, pp. 839–846 (1998)Google Scholar
  14. 14.
    Tschumperlé, D., Brun, L.: Image denoising and registration by pde’s on the space of patches (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Quoc Bao Do
    • 1
  • Azeddine Beghdadi
    • 1
  • Marie Luong
    • 1
  1. 1.L2TI,University of Paris 13France

Personalised recommendations