Abstract

An overview of the new spatio-temporal video filtering technique was presented in this paper. The extension of standard techniques based on temporal Gaussian combined with Fast Digital Paths Approach [9] with fuzzy similarity function was presented. Presented technique provides excellent noise suppression ability especially for low light sequences.

Keywords

Processing Window Normalize Mean Square Error Connection Cost Vector Median Filter Random Walk Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Astola, J., Haavisto, P., Neuovo, Y.: Vector median filters. IEEE Proc. 78, 678–689 (1990)CrossRefGoogle Scholar
  2. 2.
    Bennett, E.P., McMillan, L.: Video enhancement using per-pixel virtual exposures. ACM Trans. Graph. 24(3), 845–852 (2005)CrossRefGoogle Scholar
  3. 3.
    Cuisenaire, O.: Distance transformations: fast algorithms and applications to medical image processing. PhD thesis, Université Catholique de Louvain (October 1999)Google Scholar
  4. 4.
    Dubois, E., Sabri, S.: Noise reduction in image sequences using motion-compensated temporal filtering. IEEE Transactions on Communications 32(7), 826–831 (1984)CrossRefGoogle Scholar
  5. 5.
    Lee, S., Maik, V., Jang, J., Shin, J., Paik, J.: Noise-adaptive spatio-temporal filter for real-time noise removal in low light level images. IEEE Transactions on Consumer Electronics 51, 648–653 (2005)CrossRefGoogle Scholar
  6. 6.
    Plataniotis, K.N., Androutsos, D., Vinayagamoorthy, S., Venetsanopoulos, A.N.: Color image processing using adaptive multichannel filters. IEEE Trans. on Image Processing 6(7), 933–950 (1997)CrossRefGoogle Scholar
  7. 7.
    Schmitt, M.: Lecture notes on geodesy and morphological measurements. In: Proceedings of the Summer School on Morphological Image and Signal Processing, Zakopane, Poland, pp. 36–91 (1995)Google Scholar
  8. 8.
    Smolka, B., Wojciechowski, K.: Random walk approach to image enhancement. Signal Processing 81(3), 465–482 (2001)CrossRefMATHGoogle Scholar
  9. 9.
    Szczepanski, M., Smolka, B., Plataniotis, K.N., Venetsanopoulos, A.N.: On the geodesic paths approach to color image filtering. Signal Processing 83(6), 1309–1342 (2003)CrossRefMATHGoogle Scholar
  10. 10.
    Toivanen, P.J.: New geodesic distance transforms for gray scale images. Pattern Recognition Letters 17, 437–450 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marek Szczepański
    • 1
  1. 1.Faculty of Automatic Control, Electronics and Computer ScienceSilesian University of TechnologyGliwicePoland

Personalised recommendations