P Systems in Stereo Matching

  • Georgy Gimel’farb
  • Radu Nicolescu
  • Sharvin Ragavan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6855)


Designing parallel versions of sequential algorithms has attracted renewed attention, due to recent hardware advances, including various general-purpose multi-core, multiple core and many-core processors, as well as special-purpose FPGA implementations. P systems consist of networks of autonomous cells, such that each cell transforms its input signals in accord with symbol-rewriting rules and feeds the output results into its immediate neighbours. Inherent intra- and inter-cell parallelism make the P systems a prospective theoretical testbed for designing parallel algorithms. This paper discusses capabilities of P systems to implement the symmetric dynamic programming algorithm for stereo matching, with due account to binocular or monocular visibility of 3D surface points.


Parallel systems membrane computing stereo matching symmetric dynamic programming stereo (SDPS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The P systems webpage,
  2. 2.
    Carnero, J., Díaz-Pernil, D., Molina-Abril, H., Real, P.: Image segmentation inspired by cellular models using hardware programming. In: González-Díaz, R., Real-Jurado, P. (eds.) 3rd International Workshop on Computational Topology in Image Context, pp. 143–150 (2010)Google Scholar
  3. 3.
    Christinal, H.A., Díaz-Pernil, D., Real, P.: P systems and computational algebraic topology. Mathematical and Computer Modelling 52(11-12), 1982–1996 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dinneen, M.J., Kim, Y.B., Nicolescu, R.: A faster P solution for the Byzantine agreement problem. In: Gheorghe, M., Hinze, T., Păun, G. (eds.) CMC 2010. LNCS, vol. 6501, pp. 175–197. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Dinneen, M.J., Kim, Y.B., Nicolescu, R.: P systems and the Byzantine agreement. Journal of Logic and Algebraic Programming 79(6), 334–349 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Gimel’farb, G., Nicolescu, R., Ragavan, S.: P systems in stereo matching. Report CDMTCS-401, Centre for Discrete Mathematics and Theoretical Computer Science, The University of Auckland, Auckland, New Zealand (April 2011),
  7. 7.
    Gimel’farb, G.L.: Probabilistic regularisation and symmetry in binocular dynamic programming stereo. Pattern Recognition Letters 23(4), 431–442 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Nicolescu, R., Dinneen, M.J., Kim, Y.B.: Towards structured modelling with hyperdag P systems. International Journal of Computers, Communications and Control 2, 209–222 (2010)Google Scholar
  9. 9.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Păun, G.: Membrane Computing: An Introduction. Springer-Verlag New York, Inc., Secaucus (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Păun, G.: Introduction to membrane computing. In: Ciobanu, G., Pérez-Jiménez, M.J., Păun, G. (eds.) Applications of Membrane Computing. Natural Computing Series, pp. 1–42. Springer, Heidelberg (2006)Google Scholar
  12. 12.
    Păun, G., Pérez-Jiménez, M.J.: Solving problems in a distributed way in membrane computing: dP systems. International Journal of Computers, Communications and Control 5(2), 238–252 (2010)CrossRefGoogle Scholar
  13. 13.
    Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press, Inc., New York (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Georgy Gimel’farb
    • 1
  • Radu Nicolescu
    • 1
  • Sharvin Ragavan
    • 1
  1. 1.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations