Human Visual System for Complexity Reduction of Image and Video Restoration

  • Vittoria Bruni
  • Daniela De Canditiis
  • Domenico Vitulano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6855)


This paper focuses on the use of Human Visual System (HVS) rules for reducing the complexity of image and video restoration algorithms. Specifically, a fast HVS based block classification is proposed for distinguishing image blocks where restoration is necessary from the ones where it is useless. Some experimental results on standard test images and video sequences show the capability of the proposed method in reducing the computing time of de-noising algorithms, preserving the visual quality of the restored sequences.


Human Visual System Block classification Complexity Reduction Image and Video Restoration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hontsch, I., Karam, L.J.: Adaptive image coding with perceptual distortion control. IEEE Trans. on Image Processing 11(3), 213–222 (2002)CrossRefGoogle Scholar
  2. 2.
    Watson, A.B., Yang, G.Y., Solomon, J.A., Villasenor, J.: Visibility of wavelet quantization noise. IEEE Trans. on Image Processing 6(8), 1164–1174 (1997)CrossRefGoogle Scholar
  3. 3.
    Agaian, S., Silver, B., Panetta, K.: Transform coefficient histogram based image enhancement algorithms using contrast entropy. IEEE Trans. on Image Processing 16(3), 741–758 (2007)CrossRefGoogle Scholar
  4. 4.
    Panetta, K., Wharton, E.J., Agaian, S.S.: Human visual system-based image enhancement and logarithmic contrast measure. IEEE Trans. on Syst., Man and Cyber. 38(1), 174–188 (2008)CrossRefGoogle Scholar
  5. 5.
    Bruni, V., Vitulano, D.: A generalized model for scratch detection. IEEE Trans. on Image Processing 13(1), 44–50 (2004)CrossRefGoogle Scholar
  6. 6.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. on Image Processing 13, 600–612 (2004)CrossRefGoogle Scholar
  7. 7.
    Tong, H.H.Y., Venetsanopoulos, A.N.: A perceptual model for jpeg applications based on block classification, texture masking and luminance masking. In: Proc. of International Conference on Image Processing (ICIP 1998), vol. 3 (1998)Google Scholar
  8. 8.
    Wong, T.S., Bouman, C.A., Pollak, I., Fan, Z.: A document image model and estimation algorithm for optimized JPEG decompression. IEEE Trans. on Image Processing 18(11), 2518–2535 (2009)CrossRefGoogle Scholar
  9. 9.
    Zhang, X., Lin, W., Xue, P.: Just-noticeable difference estimation with pixels in images. Journal of Visual Communication and Image Representation 19, 30–41 (2008)CrossRefGoogle Scholar
  10. 10.
    Monte, V., Frazor, R.A., Bonin, V., Geisler, W.S., Corandin, V.: Independence of luminance and contrast in natural scenes and in the early visual system. Nature Neuroscience 8(12) (2005)Google Scholar
  11. 11.
    Frazor, R.A., Geisler, W.S.: Local luminance and contrast in natural in natural images. Vision Research 46, 1585–1598 (2006)CrossRefGoogle Scholar
  12. 12.
    Channabasappa, M.N.: On the square root formula in the Bakhshali manuscript. Indian J. History Sci. 11(2), 112–124 (1976)zbMATHGoogle Scholar
  13. 13.
    Shi, Y.Q., Sun, H.: Image and video compression for multimedia engineering: fundamentals, algorithms and standards. CRC Press, Boca Raton (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Vittoria Bruni
    • 1
  • Daniela De Canditiis
    • 2
  • Domenico Vitulano
    • 2
  1. 1.Dept. of SBAI, Faculty of EngineeringUniversity of Rome ”La Sapienza”Italy
  2. 2.Istituto per le Applicazioni del Calcolo ”M. Picone” (CNR)RomeItaly

Personalised recommendations