Advertisement

K-nn Queries in Graph Databases Using M-Trees

  • Francesc Serratosa
  • Albert Solé-Ribalta
  • Xavier Cortés
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6854)

Abstract

Metric trees (m-trees) are used to organize and execute fast queries on large databases. In classical schemes based on m-trees, routing information kept in an m-tree node includes a representative or a prototype to describe the sub-cluster. Several research has been done to apply m-trees to databases of attributed graphs. In these works routing elements are selected graphs of the sub-clusters. In the current paper, we propose to use Graph Metric Trees to improve k-nn queries. We present two types of Graph Metric Trees. The first uses a representative (Set Median Graph) as routing information; the second uses a graph prototype. Experimental validation shows that it is possible to improve k-nn queries using m-trees when noise between graphs of the same class is of reasonable level.

Keywords

graph database m-tree graph organization graph prototype graph indexing Mean Graph Median Graph Set Median Graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith, J.R., Samet, H.: VisualSEEk: A Fully Automated Content-Based Image Query System. In: Proc. ACM Multimedia, pp. 87–98 (1996) Google Scholar
  2. 2.
    Gudivada, V.N., Raghavan, V.V.: Special issue on Content Based Image Retrieval Systems. Computer 28(9) (1995) Google Scholar
  3. 3.
    Berretti, S., Del Bimbo, A., Vicario, E.: Efficient Matching and Indexing of Graph Models in Content-Based Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(10), 1089–1105 (2001)CrossRefGoogle Scholar
  4. 4.
    Zhao, J.L., Cheng, H.K.: Graph Indexing for Spatial Data Traversal in Road Map Databases. Computers & Operations Research 28, 223–241 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness (1979) Google Scholar
  6. 6.
    Gold, S., Rangarajan, A.: A Graduated Assignment Algorithm for Graph Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(4), 377–388 (1996)CrossRefGoogle Scholar
  7. 7.
    Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vision Comput. 27(7), 950–959 (2009)CrossRefGoogle Scholar
  8. 8.
    Shasha, D., Wang, J.T.L., Giugno, R.: Algorithmics and applications of tree and graph searching. In: ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 39–52 (2002) Google Scholar
  9. 9.
    Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-based approach. In: ACM SIGMOD International Conference on Management of Data, pp. 335–346 (2004) Google Scholar
  10. 10.
    Lee, S.Y., Hsu, F.: Spatial Reasoning and Similarity Retrieval of Images using 2D C-Strings Knowledge Representation. Pattern Recognition 25(3), 305–318 (1992)CrossRefGoogle Scholar
  11. 11.
    He, H., Singh, A.K.: Closure-Tree: An Index Structure for Graph Queries. In: Proc. International Conference on Data Engineering, p. 38 (2006) Google Scholar
  12. 12.
    Ciaccia, P., Patella, M., Zezula, P.: M-tree: An Efficient Access Method for Similarity Search in Metric Spaces. In: Proc. 23rd VLDB Conference, pp. 426–435 (1997) Google Scholar
  13. 13.
    Wong, A.K.C., et al.: Entropy and distance of random graphs with application to structural pattern recognition. IEEE Trans. on Patt. Anal. & Machine Intelligence 7, 599–609 (1985)CrossRefzbMATHGoogle Scholar
  14. 14.
    Sanfeliu, A., King-Sun, F.: A Distance measure between attributed relational graphs for pattern recognition. IEEE Trans. on Systems, Man, and Cybernetics 13(3), 353–362 (1983)CrossRefzbMATHGoogle Scholar
  15. 15.
    Solé-Ribalta, A., Serratosa, F.: Graduated Assignment Algorithm for Finding the Common Labelling of a set of Graphs. In: Proceedings of Syn. and Struc. Patt. Recog., pp. 180–190 (2010) Google Scholar
  16. 16.
    Ferrer, M., Valveny, E., Serratosa, F.: Median graphs: A genetic approach based on new theoretical properties. Pattern Recognition 42(9), 2003–2012 (2009)CrossRefzbMATHGoogle Scholar
  17. 17.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2009) ISBN 0-387-84857-6 CrossRefzbMATHGoogle Scholar
  18. 18.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, Heidelberg (2005) ISBN-13: 978-0387954318zbMATHGoogle Scholar
  19. 19.
    Solé, A., Serratosa, F., Vidiella, E.: Graph Indexing and Retrieval based on Median Graphs. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Kittler, J. (eds.) MCPR 2010. LNCS, vol. 6256, pp. 311–321. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Francesc Serratosa
    • 1
  • Albert Solé-Ribalta
    • 1
  • Xavier Cortés
    • 1
  1. 1.Departament d’Enginyeria Informàtica i MatemàtiquesUniversitat Rovira i VirgiliSpain

Personalised recommendations