Arc Segmentation in Linear Time

  • Thanh Phuong Nguyen
  • Isabelle Debled-Rennesson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6854)

Abstract

A linear algorithm based on a discrete geometry approach is proposed for the detection of digital arcs and digital circles using a new representation of them. It is introduced by inspiring from the work of Latecki [1]. By utilizing this representation, we transform the problem of digital arc detection into a problem of digital straight line recognition. We then develop a linear method for arc segmentation of digital curves.

Keywords

Tangent Space Linear Time Linear Method Linear Algorithm Input Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Latecki, L., Lakamper, R.: Shape similarity measure based on correspondence of visual parts. PAMI 22, 1185–1190 (2000)CrossRefGoogle Scholar
  2. 2.
    Nakamura, A., Aizawa, K.: Digital circles. Computer Vision, Graphics, and Image Processing 26, 242–255 (1984)CrossRefGoogle Scholar
  3. 3.
    Kim, C.E.: Digital disks. PAMI 6, 372–374 (1984)CrossRefMATHGoogle Scholar
  4. 4.
    Kim, C.E., Anderson, T.A.: Digital disks and a digital compactness measure. In: STOC, pp. 117–124. ACM, New York (1984)Google Scholar
  5. 5.
    Kovalevsky, V.: New definition and fast recognition of digital straight segments and arcs. In: ICPR, vol. 2, pp. 31–34 (1990)Google Scholar
  6. 6.
    Fisk, S.: Separating point sets by circles, and the recognition of digital disks. PAMI 8, 554–556 (1986)CrossRefGoogle Scholar
  7. 7.
    Coeurjolly, D., Gérard, Y., Reveillès, J.P., Tougne, L.: An elementary algorithm for digital arc segmentation. Discrete Applied Mathematics 139, 31–50 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Sauer, P.: On the recognition of digital circles in linear time. Comput. Geom. Theory Appl. 2, 287–302 (1993)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Damaschke, P.: The linear time recognition of digital arcs. Pattern Recognition Letters 16, 543–548 (1995)CrossRefMATHGoogle Scholar
  10. 10.
    Megiddo, N.: Linear programming in linear time when the dimension is fixed. Journal of the ACM 31, 114–127 (1984)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Worring, M., Smeulders, A.: Digitized circular arcs: characterization and parameter estimation. PAMI 17, 587–598 (1995)CrossRefGoogle Scholar
  12. 12.
    Roussillon, T., Tougne, L., Sivignon, I.: On three constrained versions of the digital circular arc recognition problem. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 34–45. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition of noisy shapes in linear time. Computers & Graphics 30 (2006)Google Scholar
  14. 14.
    Andres, E.: Discrete circles, rings and spheres. Computers & Graphics 18, 695–706 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thanh Phuong Nguyen
    • 1
  • Isabelle Debled-Rennesson
    • 1
  1. 1.ADAGIo teamLORIA, Nancy UniversityVandoeuvre-lès-NancyFrance

Personalised recommendations