One-Dimensional Staged Self-assembly

  • Erik D. Demaine
  • Sarah Eisenstat
  • Mashhood Ishaque
  • Andrew Winslow
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6937)


We introduce the problem of staged self-assembly of one-dimensional nanostructures, which becomes interesting when the elements are labeled (e.g., representing functional units that must be placed at specific locations). In a restricted model in which each operation has a single terminal assembly, we prove that assembling a given string of labels with the fewest stages is equivalent, up to constant factors, to compressing the string to be uniquely derived from the smallest possible context-free grammar (a well-studied O(logn)-approximable problem). Without this restriction, we show that the optimal assembly can be substantially smaller than the optimal context-free grammar, by a factor of \(\Omega(\sqrt{n/\log n})\) even for binary strings of length n. Fortunately, we can bound this separation in model power by a quadratic function in the number of distinct glues or tiles allowed in the assembly, which is typically small in practice.


context-free grammar Wang tile DNA computing complexity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Rasala, A., Sahai, A., Shelat, A.: Approximating the smallest grammar: Kolmogorov complexity in natural models. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, New York, NY, USA, pp. 792–801. ACM, New York (2002)Google Scholar
  2. 2.
    Demaine, E., Demaine, M., Fekete, S., Ishaque, M., Rafalin, E., Schweller, R., Souvaine, D.: Staged self-assembly: nanomanufacture of arbitrary shapes with O(1) glues. Natural Computing 7, 347–370 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Farach, M., Thorup, M.: String matching in Lempel-Ziv compressed strings. Algorithmica 20, 388–404 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Göös, M., Orponen, P.: Synthesizing minimal tile sets for patterned dna self-assembly. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 71–82. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Lehman, E.: Approximation Algorithms for Grammar-Based Data Compression. PhD thesis, MIT (2002)Google Scholar
  6. 6.
    Ma, X., Lombardi, F.: Synthesis of tile sets for dna self-assembly. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27(5), 963–967 (2008)CrossRefGoogle Scholar
  7. 7.
    Rytter, W.: Application of Lempel-Ziv Factorization to the Approximation of Grammar-Based Compression. In: Apostolico, A., Takeda, M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 20–31. Springer, Heidelberg (2002), doi:10.1007/3-540-45452-7_3.CrossRefGoogle Scholar
  8. 8.
    Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based compression. Journal of Discrete Algorithms 3(2-4), 416–430 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Soloveichik, D., Winfree, E.: Complexity of Self-assembled Shapes. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 344–354. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, Caltech (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Erik D. Demaine
    • 1
  • Sarah Eisenstat
    • 1
  • Mashhood Ishaque
    • 2
  • Andrew Winslow
    • 2
  1. 1.MIT Computer Science and Artificial Intelligence LaboratoryCambridgeUSA
  2. 2.Department of Computer ScienceTufts UniversityMedfordUSA

Personalised recommendations