Geometric Metamorphosis

  • Marc Niethammer
  • Gabriel L. Hart
  • Danielle F. Pace
  • Paul M. Vespa
  • Andrei Irimia
  • John D. Van Horn
  • Stephen R. Aylward
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6892)

Abstract

Standard image registration methods do not account for changes in image appearance. Hence, metamorphosis approaches have been developed which jointly estimate a space deformation and a change in image appearance to construct a spatio-temporal trajectory smoothly transforming a source to a target image. For standard metamorphosis, geometric changes are not explicitly modeled. We propose a geometric metamorphosis formulation, which explains changes in image appearance by a global deformation, a deformation of a geometric model, and an image composition model. This work is motivated by the clinical challenge of predicting the long-term effects of traumatic brain injuries based on time-series images. This work is also applicable to the quantification of tumor progression (e.g., estimating its infiltrating and displacing components) and predicting chronic blood perfusion changes after stroke. We demonstrate the utility of the method using simulated data as well as scans from a clinical traumatic brain injury patient.

Keywords

Traumatic Brain Injury Source Image Target Image Geometric Object Registration Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anderson, S.M., Rapcsak, S.Z., Beeson, P.M.: Cost function masking during normalization of brains with focal lesions: still a necessity? Neuroimage 53(1), 78–84 (2010)CrossRefGoogle Scholar
  2. 2.
    Brett, M., Leff, A., Rorden, C., Ashburner, J.: Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage 14(2), 486–500 (2001)CrossRefGoogle Scholar
  3. 3.
    Hart, G.L., Zach, C., Niethammer, M.: An optimal control approach for deformable registration. In: MMBIA Workshop, CVPR (2009)Google Scholar
  4. 4.
    Hogea, C., Davatzikos, C., Biros, G.: An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects. Journal of Mathematical Biology 56(6), 793–825 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Lamecker, H., Pennec, X.: Atlas to image-with-tumor registration based on demons and deformation inpainting. In: Proc. MICCAI Workshop on Computational Imaging Biomarkers for Tumors - From Qualitative to Quantitative, CIBT 2010 (2010)Google Scholar
  6. 6.
    Miller, M.I., Younes, L.: Group actions, homeomorphisms, and matching: A general framework. International Journal of Computer Vision 41(1/2), 61–84 (2001)CrossRefMATHGoogle Scholar
  7. 7.
    Prastawa, M., Bullitt, E., Gerig, G.: Simulation of brain tumors in MR images for evaluation of segmentation efficacy. Medical Image Analysis 13(2), 297–311 (2009)CrossRefGoogle Scholar
  8. 8.
    Stefanescu, R., Commowick, O., Malandain, G., Bondiau, P., Ayache, N., Pennec, X.: Non-rigid atlas to subject registration with pathologies for conformal brain radiotherapy. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 704–711. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Trouve, A., Younes, L.: Metamorphoses through Lie group action. In: Foundations of Computational Mathematics, pp. 173–198 (2005)Google Scholar
  10. 10.
    Zacharaki, E., Hogea, C., Shen, D., Biros, G., Davatzikos, C.: Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth. Neuroimage 46(3), 762–774 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marc Niethammer
    • 1
    • 2
  • Gabriel L. Hart
    • 3
  • Danielle F. Pace
    • 3
  • Paul M. Vespa
    • 5
  • Andrei Irimia
    • 4
  • John D. Van Horn
    • 4
  • Stephen R. Aylward
    • 3
  1. 1.University of North Carolina (UNC)Chapel HillUSA
  2. 2.Biomedical Research Imaging CenterUNCChapel HillUSA
  3. 3.Kitware, Inc.CarrboroUSA
  4. 4.Laboratory of Neuro ImagingUniversity of CaliforniaLos AngelesUSA
  5. 5.Brain Injury Research CenterUniversity of CaliforniaLos AngelesUSA

Personalised recommendations