2D Image Registration in CT Images Using Radial Image Descriptors

  • Franz Graf
  • Hans-Peter Kriegel
  • Matthias Schubert
  • Sebastian Pölsterl
  • Alexander Cavallaro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6892)


Registering CT scans in a body atlas is an important technique for aligning and comparing different CT scans. It is also required for navigating automatically to certain regions of a scan or if sub volumes should be identified automatically. Common solutions to this problem employ landmark detectors and interpolation techniques. However, these solutions are often not applicable if the query scan is very small or consists only of a single slice. Therefore, the research community proposed methods being independent from landmark detectors which are using imaging techniques to register the slices in a generalized height scale. In this paper, we propose an improved prediction method for registering single slices. Our solution is based on specialized image descriptors and instance-based learning. The experimental evaluation shows that the new method improves accuracy and stability of comparable registration methods by using only a a single CT slice is required for the registration.


Computer Tomography Similarity Search Retrieval Localization 


  1. 1.
    Abramoff, M., Magelhaes, P., Ram, S.: Image processing with Image. J. Biophotonics International 11(7), 36–42 (2004)Google Scholar
  2. 2.
    Belongie, S., Malik, M., Puzicha, J.: Shape context: A new descriptor for shape matching and object recognition. In: NIPS, pp. 831–837 (2000)Google Scholar
  3. 3.
    Bürger, C.: Automatic Localisation of Body Regions in CT Topograms. VDM, Saarbrücken (2008)Google Scholar
  4. 4.
    Emrich, T., Graf, F., Kriegel, H.P., Schubert, M., Thoma, M., Cavallaro, A.: CT slice localization via instance-based regression. In: Proceedings of the SPIE Medical Imaging 2010: Image Processing (SPIE), San Diego, CA, USA, vol. 7623 (2010)Google Scholar
  5. 5.
    Feulner, J., Zhou, S.K., Seifert, S., Cavallaro, A., Hornegger, J., Comaniciu, D.: Estimating the body portion of CT volumes by matching histograms of visual words. In: Proceedings of the SPIE Medical Imaging 2009 Conference (SPIE), Lake Buena Vista, FL, USA, vol. 7259, p. 72591V (2009)Google Scholar
  6. 6.
    Güld, M.O., Kohnen, M., Keysers, D., Schubert, H., Wein, B.B., Bredno, J., Lehmann, T.M.: Quality of DICOM header information for image categorization. In: Proceedings of the SPIE Medical Imaging 2002: PACS and Integrated Medical Information Systems: Design and Evaluation (SPIE), San Diego, CA, USA, pp. 280–287 (2002)Google Scholar
  7. 7.
    Haas, B., Coradi, T., Scholz, M., Kunz, P., Huber, M., Oppitz, U., André, L., Lengkeek, V., Huyskens, D., van Esch, A., Reddick, R.: Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ-specific segmentation strategies. Physics in Medicine and Biology 53(6), 1751–1771 (2008)CrossRefGoogle Scholar
  8. 8.
    Pavlidis, T., Liow, Y.: Integrating region growing and edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 225–233 (1990)Google Scholar
  9. 9.
    Seifert, S., Barbu, A., Zhou, S., Liu, D., Feulner, J., Huber, M., Suehling, M., Cavallaro, A., Comaniciu, D.: Hierarchical parsing and semantic navigation of full body CT data. In: Proceedings of the SPIE Medical Imaging 2009 Conference (SPIE), Lake Buena Vista, FL, USA, vol. 7259, p. 725902 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Franz Graf
    • 1
  • Hans-Peter Kriegel
    • 1
  • Matthias Schubert
    • 1
  • Sebastian Pölsterl
    • 1
  • Alexander Cavallaro
    • 2
  1. 1.Institut für InformatikLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Radiologisches InstitutUniverstätsklinikum Erlangen Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations