Advertisement

Joint Segmentation and Deformable Registration of Brain Scans Guided by a Tumor Growth Model

  • Ali Gooya
  • Kilian M. Pohl
  • Michel Bilello
  • George Biros
  • Christos Davatzikos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6892)

Abstract

This paper presents an approach for joint segmentation and deformable registration of brain scans of glioma patients to a normal atlas. The proposed method is based on the Expectation Maximization (EM) algorithm that incorporates a glioma growth model for atlas seeding, a process which modifies the normal atlas into one with a tumor and edema. The modified atlas is registered into the patient space and utilized for the posterior probability estimation of various tissue labels. EM iteratively refines the estimates of the registration parameters, the posterior probabilities of tissue labels and the tumor growth model parameters. We have applied this approach to 10 glioma scans acquired with four Magnetic Resonance (MR) modalities (T1, T1-CE, T2 and FLAIR ) and validated the result by comparing them to manual segmentations by clinical experts. The resulting segmentations look promising and quantitatively match well with the expert provided ground truth.

Keywords

joint segmentation-registration EM diffusion-reaction model 

References

  1. 1.
    Gooya, A., Biros, G., Davatzikos, C.: Deformable registration of glioma images using em algorithm and diffusion reaction modeling. IEEE TMI 30, 375–390 (2011)Google Scholar
  2. 2.
    Zitova, B., Flusser, J.: Image registration methods: a survey. Im. Vis. Comp. (2003)Google Scholar
  3. 3.
    Hogea, C., Davatzikos, C., Biros, G.: An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J. Math. Biol. 56, 793–825 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Duffao, H., Capalle, L.: Preferential brain locations of low grade gliomas. Cancer 15, 2622–2626 (2004)CrossRefGoogle Scholar
  5. 5.
    Hough, P.D., Kolda, T.G., Torczon, V.J.: Asynchronous parallel pattern search for nonlinear optimization. SIAM Journal on Scientific Computing 23(1), 134–156 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ashburner, J., Friston, K.J.: Unified segmentation. NeuroImage 26, 839–851 (2005)CrossRefGoogle Scholar
  7. 7.
    Thirion, J.P.: Image matching as diffusion process: An analogy with maxwell’s demons. Med. Ima. Anal. 2, 243–260 (1998)CrossRefGoogle Scholar
  8. 8.
    Pohl, K.M., Fisher, J., Kikinis, R., Wells, W.M.: A bayesian model for joint segmentation and registration. NeuroImage 31, 228–239 (2006)CrossRefGoogle Scholar
  9. 9.
    Leemput, K.V., Maes, F., Vandermeulen, D., Colchester, A., Suetens, P.: Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE TMI 20, 677–688 (2001)Google Scholar
  10. 10.
    Cuadra, M.B., Craene, M.D., Duay, V., Macq, B., Pollo, C., Thiran, J.: Dense deformation field estimation for atlas-based segmentation of pathological MR brain images. Comput. Methods Programs Biomed. 84, 66–75 (2006)CrossRefGoogle Scholar
  11. 11.
    Brett, M., Leff, A.P., Rorden, C., Ashburner, J.: Spatial normalization of brain images with focal lesions using cost function masking. NI 14 (2001)Google Scholar
  12. 12.
    Jenkinson, M., Bannister, P.R., Brady, J.M., Smith, S.M.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002)CrossRefGoogle Scholar
  13. 13.
    Prastawa, M., Bullitt, E., Moon, N., Leemput, K.V., Gerig, G.: Automatic brain tumor segmentation by subject specific modification of atlas priors. Aca. Rad. 10 (2003)Google Scholar
  14. 14.
    Kyriacou, S.K., Davatzikos, C., Zinreich, S.J., Bryan, R.N.: Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model. IEEE Trans. Med. Imag. 18, 580–592 (1999)CrossRefGoogle Scholar
  15. 15.
    Sled, J., Zijdenbos, A., Evans, A.: A nonparametric method for automatic correction of intensity nonuniformity in mri data. IEEE TMI. 17, 81–97 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ali Gooya
    • 1
  • Kilian M. Pohl
    • 1
  • Michel Bilello
    • 1
  • George Biros
    • 1
  • Christos Davatzikos
    • 1
  1. 1.Section for Biomedical Image AnalysisPhiladelphiaUS

Personalised recommendations