Graph Based Spatial Position Mapping of Low-Grade Gliomas

  • Sarah Parisot
  • Hugues Duffau
  • Stéphane Chemouny
  • Nikos Paragios
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6892)


Low-grade gliomas (WHO grade II) are diffusively infiltrative brain tumors arising from glial cells. Spatial classification that is usually based on cerebral lobes lacks accuracy and is far from being able to provide some pattern or statistical interpretation of their appearance. In this paper, we propose a novel approach to understand and infer position of low-grade gliomas using a graphical model. The problem is formulated as a graph topology optimization problem. Graph nodes correspond to extracted tumors and graph connections to the spatial and content dependencies among them. The task of spatial position mapping is then expressed as an unsupervised clustering problem, where cluster centers correspond to centers with position appearance prior, and cluster samples to nodes with strong statistical dependencies on their position with respect to the cluster center. Promising results using leave-one-out cross-validation outperform conventional dimensionality reduction methods and seem to coincide with conclusions drawn in physiological studies regarding the expected tumor spatial distributions and interactions.


Cluster Center Central Node Independent Component Analysis Deformable Registration Graph Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Duffau, D.: Surgery of low-grade gliomas: towards a ’functional neurooncology’. Current Opinion in Oncology 21(6), 543–549 (2009)CrossRefGoogle Scholar
  2. 2.
    Sofetti, R., Baumert, B., Bello, L., et al.: Guidelines on management of low-grade gliomas: report of an EFNS-EANO task force. Eur. J. Neurol. 17, 1124–1133 (2010)CrossRefGoogle Scholar
  3. 3.
    Larjavaara, S., Mantyla, R., Salminen, T., et al.: Incidence of gliomas by anatomic location. Neuro-oncology 9, 319–325 (2007)CrossRefGoogle Scholar
  4. 4.
    Duffau, H., Capelle, L.: Preferential brain locations of low-grade gliomas. Cancer 100, 2622–2626 (2004)CrossRefGoogle Scholar
  5. 5.
    Shlens, J.: A tutorial on Principal Component Analysis. Systems Neurobiology Laboratory, Salk Institute for Biological Studies (2005)Google Scholar
  6. 6.
    Hyvarinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural. Netw. 13, 411–430 (2000)CrossRefGoogle Scholar
  7. 7.
    Tenenbaum, J.B., Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  8. 8.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: NIPS (2001)Google Scholar
  9. 9.
    Zheng, X., Rajapakse, J.C.: Learning functional structure from fMR images. Neuroimage 31, 1601–1613 (2006)CrossRefGoogle Scholar
  10. 10.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009)CrossRefGoogle Scholar
  11. 11.
    Komodakis, N., Paragios, N., Tziritas, G.: Clustering via LP-based Stabilities. In: NIPS, pp. 865–872 (2008)Google Scholar
  12. 12.
    Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Medical Image Analysis 12, 731–741 (2008)CrossRefGoogle Scholar
  13. 13.
    Pokrajac, D., Megalooikonomou, V., Lazarevic, A., Kontos, K., Obradovic, Z.: Applying spatial distribution analysis techniques to classification of 3D medical images. Artificial Intelligence in Medicine 33, 261–280 (2005)CrossRefGoogle Scholar
  14. 14.
    Dunn, J.C.: Well separated clusters and optimal fuzzy partitions. J. Cybern. 4, 95–104 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. on PAMI 1(4), 224–227 (1979)CrossRefGoogle Scholar
  16. 16.
    Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRefzbMATHGoogle Scholar
  17. 17.
    Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph matching: Models and global optimization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 596–609. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Sotiras, A., Komodakis, N., Glocker, B., Deux, J.-F., Paragios, N.: Graphical models and deformable diffeomorphic population registration using global and local metrics. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 672–679. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Glocker, B., Paragios, N., Komodakis, N., Tziritas, G., Navab, N.: Optical Flow Estimation with Uncertainties through Dynamic MRFs. In: CVPR (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sarah Parisot
    • 1
    • 2
    • 3
  • Hugues Duffau
    • 4
  • Stéphane Chemouny
    • 3
  • Nikos Paragios
    • 1
    • 2
  1. 1.Laboratoire MASEcole Centrale ParisChatenay MalabryFrance
  2. 2.Equipe GALEN, INRIA Saclay - Ile de FranceOrsayFrance
  3. 3.Intrasense SASMontpellierFrance
  4. 4.Département de Neurochirurgie, Hopital Gui de ChauliacCHUMontpellierFrance

Personalised recommendations