Integrated Parcellation and Normalization Using DTI Fasciculography

  • Hon Pong Ho
  • Fei Wang
  • Xenophon Papademetris
  • Hilary P. Blumberg
  • Lawrence H. Staib
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6892)

Abstract

Existing methods for fiber tracking, interactive bundling and editing from Diffusion Magnetic Resonance Images (DMRI) reconstruct white matter fascicles using groups of virtual pathways. Classical numerical fibers suffer from image noise and cumulative tracking errors. 3D visualization of bundles of fibers reveals structural connectivity of the brain; however, extensive human intervention, tracking variations and errors in fiber sampling make quantitative fascicle comparison difficult. To simplify the process and offer standardized white matter samples for analysis, we propose a new integrated fascicle parcellation and normalization method that combines a generic parametrized volumetric tract model with orientation information from diffusion images. The new technique offers a tract-derived spatial parameter for each voxel within the model. Cross-subject statistics of tract data can be compared easily based on these parameters. Our implementation demonstrated interactive speed and is available to the public in a packaged application.

Keywords

Seed Point Tracking Result Diffusion Magnetic Resonance Image Tract Axis Tract Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson B 103, 247–254 (1994)CrossRefGoogle Scholar
  2. 2.
    Lori, N., Akbudak, E., Shimony, J., Cull, T., Snyder, A., Guillory, R., Conturo, T.: Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results. NMR In Biomedicine 15, 493–515 (2002)CrossRefGoogle Scholar
  3. 3.
    Alexander, A.L., Hasan, K.M., Lazar, M., Tsuruda, J.S., Parker, D.L.: Analysis of partial volume effects in diffusion-tensor MRI. Magn. Reson Med. 45, 770–780 (2001)CrossRefGoogle Scholar
  4. 4.
    Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265–269 (1999)CrossRefGoogle Scholar
  5. 5.
    Lazar, M., Weinstein, D.M., Tsuruda, J.S., Hasan, K.M., Arfanakis, K., Meyerand, M.E., Badie, B., Rowley, H.A., Haughton, V., Field, A., Alexander, A.L.: White matter tractography using diffusion tensor deflection. Hum. Brain Mapp. 18, 306–321 (2003)CrossRefGoogle Scholar
  6. 6.
    Catani, M., Howard, R.J., Pajevic, S., Jones, D.K.: Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17, 77–94 (2002)CrossRefGoogle Scholar
  7. 7.
    Faires, J.D., Burden, R.L.: Numerical methods, 3rd edn. Thomson/Brooks/Cole, Pacific Grove, CA (2003)MATHGoogle Scholar
  8. 8.
    Jiang, H., van Zijl, P.C.M., Kim, J., Pearlson, G.D., Mori, S.: DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput. Methods Programs Biomed. 81, 106–116 (2006)CrossRefGoogle Scholar
  9. 9.
    Wang, R., Benner, T., Sorensen, A.G., Wedeen, V.J.: Diffusion toolkit: A software package for diffusion imaging data processing and tractography. Int’l Society of Magnetic Resonance in Medicine 15, 3720 (2007)Google Scholar
  10. 10.
    O’Donnell, L.J., Westin, C.-F.: Automatic tractography segmentation using a high-dimensional white matter atlas. IEEE Trans. Med. Imaging 26, 1562–1575 (2007)CrossRefGoogle Scholar
  11. 11.
    Yushkevich, P.A., Zhang, H., Simon, T.J., Gee, J.C.: Structure-specific statistical mapping of white matter tracts. Neuroimage 41, 448–461 (2008)CrossRefMATHGoogle Scholar
  12. 12.
    O’Donnell, L.J., Westin, C.-F., Golby, A.J.: Tract-based morphometry for white matter group analysis. Neuroimage 45, 832–844 (2009)CrossRefGoogle Scholar
  13. 13.
    Mohan, V., Sundaramoorthi, G., Tannenbaum, A.: Tubular surface segmentation for extracting anatomical structures from medical imagery. IEEE Trans. Med. Imaging 29, 1945–1958 (2010)CrossRefGoogle Scholar
  14. 14.
    Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E.J.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487–1505 (2006)CrossRefGoogle Scholar
  15. 15.
    Corouge, I., Fletcher, P.T., Joshi, S., Gouttard, S., Gerig, G.: Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis. Med. Image Anal. 10, 786–798 (2006)CrossRefGoogle Scholar
  16. 16.
    Ho, H.P., Wang, F., Blumberg, H.P., Staib, L.H.: Fast parametrized volumetric DTI tract parcellation. In: IEEE Int’l Symposium on Biomedical Imaging (2011)Google Scholar
  17. 17.
    Oppenheim, A.V., Willsky, A.S., Nawab, S.H.: Signals and systems, 2nd edn. Prentice-Hall, Upper Saddle River (1997)Google Scholar
  18. 18.
    Deoni, A.: Phantom Images for Simulating Tractography Errors, http://cubric.psych.cf.ac.uk/commondti
  19. 19.
    Jackowski, M., Kao, C., Qiu, M., Constable, R., Staib, L.: White matter tractography by anisotropic wavefront evolution and diffusion tensor imaging. Medical Image Analysis 9, 427–440 (2005)CrossRefGoogle Scholar
  20. 20.
    Papademetris, X., Jackowski, M., Rajeevan, N., Okuda, H., Constable, R., Staib, L.: Bioimage Suite: An integrated medical image analysis suite, Section of Bioimaging Sciences, Dept. of Diagnostic Radiology, Yale School of MedicineGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hon Pong Ho
    • 1
  • Fei Wang
    • 4
  • Xenophon Papademetris
    • 1
    • 3
  • Hilary P. Blumberg
    • 3
    • 4
  • Lawrence H. Staib
    • 1
    • 2
    • 3
  1. 1.Departments of Biomedical EngineeringYale UniversityNew HavenUSA
  2. 2.Departments of Electrical EngineeringYale UniversityNew HavenUSA
  3. 3.Departments of Diagnostic RadiologyYale UniversityNew HavenUSA
  4. 4.Departments of PsychiatryYale UniversityNew HavenUSA

Personalised recommendations