A Statistical Model of Shape and Bone Mineral Density Distribution of the Proximal Femur for Fracture Risk Assessment

  • Tristan Whitmarsh
  • Karl D. Fritscher
  • Ludovic Humbert
  • Luís Miguel Del Rio Barquero
  • Tobias Roth
  • Christian Kammerlander
  • Michael Blauth
  • Rainer Schubert
  • Alejandro F. Frangi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6892)

Abstract

This work presents a statistical model of both the shape and Bone Mineral Density (BMD) distribution of the proximal femur for fracture risk assessment. The shape and density model was built from a dataset of Quantitative Computed Tomography scans of fracture patients and a control group. Principal Component Analysis and Horn’s parallel analysis were used to reduce the dimensionality of the shape and density model to the main modes of variation. The input data was then used to analyze the model parameters for the optimal separation between the fracture and control group. Feature selection using the Fisher criterion determined the parameters with the best class separation, which were used in Fisher Linear Discriminant Analysis to find the direction in the parameter space that best separates the fracture and control group. This resulted in a Fisher criterion value of 6.70, while analyzing the Dual-energy X-ray Absorptiometry derived femur neck areal BMD of the same subjects resulted in a Fisher criterion value of 0.98. This indicates that a fracture risk estimation approach based on the presented model might improve upon the current standard clinical practice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schuler, B., Fritscher, K.D., Kuhn, V., Eckstein, F., Link, T.M., Schubert, R.: Assessment of the individual fracture risk of the proximal femur by using statistical appearance models. Medical Physics 37(6), 2560–2571 (2010)CrossRefGoogle Scholar
  2. 2.
    Bousson, V., Adams, J., Engelke, K., Aout, M., Cohen-Solal, M., Bergot, C., Haguenauer, D., Goldberg, D., Champion, K., Aksouh, R., Vicaut, E., Laredo, J.: In vivo discrimination of hip fracture with quantitative computed tomography: Results from the prospective European Femur Fracture Study (EFFECT). Journal of Bone and Mineral Research 26(4), 881–893 (2010)CrossRefGoogle Scholar
  3. 3.
    Li, W., Kornak, J., Harris, T., Lu, Y., Cheng, X., Lang, T.: Hip fracture risk estimation based on principal component analysis of QCT atlas: a preliminary study. In: Medical Imaging 2009: Biomedical Applications in Molecular, Structural, and Functional Imaging, p. 72621M. SPIE, San Jose (2009)Google Scholar
  4. 4.
    Ito, M., Wakao, N., Hida, T., Matsui, Y., Abe, Y., Aoyagi, K., Uetani, M., Harada, A.: Analysis of hip geometry by clinical CT for the assessment of hip fracture risk in elderly Japanese women. Bone 46(2), 453–457 (2010)CrossRefGoogle Scholar
  5. 5.
    Horn, J.: A rationale and test for the number of factors in factor analysis. Psychometrika 30(2), 179–185 (1965)CrossRefGoogle Scholar
  6. 6.
    Faulkner, K., Genant, H., McClung, M.: Bilateral comparison of femoral bone density and hip axis length from single and fan beam DXA scans. Calcified Tissue International 56, 26–31 (1995)CrossRefGoogle Scholar
  7. 7.
    Ruegsegger, P., Kalender, W.A.: A phantom for standardization and quality control in peripheral bone measurements by PQCT and DXA. Physics in Medicine and Biology 38(12), 1963–1970 (1993)CrossRefGoogle Scholar
  8. 8.
    Fujii, Y., Tsunenari, T., Tsutsumi, M., Miyauchi, A., Yamada, H., Fukase, M., Yoshimoto, Y., Okuno, Y., Kusakabe, H., Miyoshi, K., Fukunaga, M., Morita, R., Fujita, T.: Quantitative computed tomography: Comparison of two calibration phantoms. Journal of Bone and Mineral Metabolism 6, 17–20 (1988)CrossRefGoogle Scholar
  9. 9.
    Suzuki, S., Yamamuro, T., Okumura, H., Yamamoto, I.: Quantitative computed tomography: comparative study using different scanners with two calibration phantoms. British Journal of Radiology 64(767), 1001–1006 (1991)CrossRefGoogle Scholar
  10. 10.
    Genant, H.K., Grampp, S., Glüer, C.C., Faulkner, K.G., Jergas, M., Engelke, K., Hagiwara, S., van Kuijk, C.: Universal standardization for dual X-ray absorptiometry: Patient and phantom cross-calibration results. Journal of Bone and Mineral Research 9(10), 1503–1514 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tristan Whitmarsh
    • 1
  • Karl D. Fritscher
    • 2
  • Ludovic Humbert
    • 1
  • Luís Miguel Del Rio Barquero
    • 3
  • Tobias Roth
    • 4
  • Christian Kammerlander
    • 4
  • Michael Blauth
    • 4
  • Rainer Schubert
    • 2
  • Alejandro F. Frangi
    • 1
  1. 1.Center for Computational Imaging & Simulation Technologies in Biomedicine, (CISTIB)Universitat Pompeu Fabra (UPF) and CIBER-BBNBarcelonaSpain
  2. 2.Institute for Biomedical Image Analysis (IBIA)University for Health Sciences, Medical Informatics and Technology (UMIT)Hall in TirolAustria
  3. 3.CETIR Centre MèdicBarcelonaSpain
  4. 4.Department for Trauma Surgery and Sports MedicineInnsbruck Medical UniversityInnsbruckAustria

Personalised recommendations