Automatic View Planning for Cardiac MRI Acquisition

  • Xiaoguang Lu
  • Marie-Pierre Jolly
  • Bogdan Georgescu
  • Carmel Hayes
  • Peter Speier
  • Michaela Schmidt
  • Xiaoming Bi
  • Randall Kroeker
  • Dorin Comaniciu
  • Peter Kellman
  • Edgar Mueller
  • Jens Guehring
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6893)

Abstract

Conventional cardiac MRI acquisition involves a multi-step approach, requiring a few double-oblique localizers in order to locate the heart and prescribe long- and short-axis views of the heart. This approach is operator-dependent and time-consuming. We propose a new approach to automating and accelerating the acquisition process to improve the clinical workflow. We capture a highly accelerated static 3D full-chest volume through parallel imaging within one breath-hold. The left ventricle is localized and segmented, including left ventricle outflow tract. A number of cardiac landmarks are then detected to anchor the cardiac chambers and calculate standard 2-, 3-, and 4-chamber long-axis views along with a short-axis stack. Learning-based algorithms are applied to anatomy segmentation and anchor detection. The proposed algorithm is evaluated on 173 localizer acquisitions. The entire view planning is fully automatic and takes less than 10 seconds in our experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cardiac MR Left Ventricle Segmentation Challenge. In: MICCAI Workshop (2009), http://smial.sri.utoronto.ca/LV_Challenge/Home.html
  2. 2.
    Attili, A.K., Schuster, A., Nagel, E., Reiber, J.H.C., van der Geest, R.J.: Quantification in cardiac MRI: advances in image acquisition and processing. Int. J. Cardiovasc Imaging 26, 27–40 (2010)CrossRefGoogle Scholar
  3. 3.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models - their training and application. Comp. Vision and Image Understanding 61, 38–59 (1995)CrossRefGoogle Scholar
  4. 4.
    Danilouchkine, M.G., Westenberg, J.J.M., Reiber, J.H.C., Lelieveldt, B.P.F.: Accuracy of short-axis cardiac MRI automatically derived from scout acquisitions in free-breathing and breath-holding modes. Magnetic Resonance Materials in Physics, Biology and Medicine 18(1), 7–18 (2005)CrossRefGoogle Scholar
  5. 5.
    Frangi, A., Niessen, W., Viergever, M.: Three-dimensional modeling for functional analysis of cardiac images: A review. IEEE Trans. on Medical Imaging 20(1) (2001)Google Scholar
  6. 6.
    Jackson, C.E., Robson, M.D., Francis, J.M., Noble, J.A.: Computerised planning of the acquisition of cardiac MR images. Computerized Medical Imaging and Graphics 28(7), 411–418 (2004)CrossRefGoogle Scholar
  7. 7.
    Lelieveldt, B.P.F., van der Geest, R.J., Lamb, H.J., Kayser, H.W.M., Reiber, J.H.C.: Automated observer-independent acquisition of cardiac short-axis MR images: A pilot study. Radiology 221, 537–542 (2001)CrossRefGoogle Scholar
  8. 8.
    Lelieveldt, B.P.F., Sonka, M., Bolinger, L., Scholz, T.D., Kayser, H., van der Geest, R., Reiber, J.H.C.: Anatomical modeling with fuzzy implicit surface templates: Application to automated localization of the heart and lungs in thoracic MR volumes. Computer Vision and Image Understanding 18(3), 218–230 (1999)MATHGoogle Scholar
  9. 9.
    Lu, X., Georgescu, B., Jolly, M., Guehring, J., Young, A., Cowan, B., Littmann, A., Comaniciu, D.: Cardiac anchoring in mri through context modeling. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 383–390. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Tu, Z.: Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering. In: Proc. ICCV, pp. 1589–1596 (2005)Google Scholar
  11. 11.
    Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  12. 12.
    Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Fast automatic heart chamber segmentation from 3D CT data using marginal space learning and steerable features. In: Proc. ICCV (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xiaoguang Lu
    • 1
  • Marie-Pierre Jolly
    • 1
  • Bogdan Georgescu
    • 1
  • Carmel Hayes
    • 2
  • Peter Speier
    • 2
  • Michaela Schmidt
    • 2
  • Xiaoming Bi
    • 3
  • Randall Kroeker
    • 4
  • Dorin Comaniciu
    • 1
  • Peter Kellman
    • 5
  • Edgar Mueller
    • 2
  • Jens Guehring
    • 2
  1. 1.Image Analytics and InformaticsSiemens Corporate ResearchPrincetonUSA
  2. 2.Healthcare Sector, H IM MR PLM-AW CARDSiemens AGErlanganGermany
  3. 3.Siemens Medical Solutions USAChicagoUSA
  4. 4.Siemens Medical Solutions CanadaWinnipegCanada
  5. 5.National Institutes of HealthBethesdaUSA

Personalised recommendations