A Holistic Approach for the Detection of Media-Adventitia Border in IVUS

  • Francesco Ciompi
  • Oriol Pujol
  • Carlo Gatta
  • Xavier Carrillo
  • Josepa Mauri
  • Petia Radeva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6893)

Abstract

In this paper we present a methodology for the automatic detection of media-adventitia border (MAb) in Intravascular Ultrasound. A robust computation of the MAb is achieved through a holistic approach where the position of the MAb with respect to other tissues of the vessel is used. A learned quality measure assures that the resulting MAb is optimal with respect to all other tissues. The mean distance error computed through a set of 140 images is 0.2164 (±0.1326) mm.

Keywords

IVUS Image Node Potential Adventitia Layer IVUS Data External Elastic Lamina 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Unal, G., Bucher, S., Carlier, S., Slabaugh, G., Fang, T., Tanaka, K.: Shape-driven segmentation of the arterial wall in intravascular ultrasound images. TITB 12(3), 335–347 (2008)Google Scholar
  2. 2.
    Gil, D., Hernandez, A., Rodriguez, O., Mauri, J., Radeva, P.: Statistical strategy for anisotropic adventitia modelling in ivus. TMI 25, 768–778 (2006)Google Scholar
  3. 3.
    Zhu, H., Liang, Y., Friedman, M.H.: Ivus image segmentation based on contrast. In: SPIE, vol. 4684, pp. 1727–1733 (2002)Google Scholar
  4. 4.
    Papadogiorgaki, M., Mezaris, V., Chatzizisis, Y.S., Giannoglou, G.D., Kompatsiaris, I.: Automated ivus contour detection using intensity features and radial basis function approximation. In: CBMS (2007)Google Scholar
  5. 5.
    Sanz-Requena, R., Moratal, D., Garca-Snchez, D.R., Bod, V., Rieta, J.J., Sanchis, J.M.: Automatic segmentation and 3d reconstruction of intravascular ultrasound images for a fast preliminar evaluation of vessel pathologies. CMIG 31(2), 71–80 (2007)Google Scholar
  6. 6.
    Cardinal, M.H.R., Meunier, J., Soulez, G., Maurice, R.L., Therasse, E., Cloutier, G.: Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions. TMI 25(5), 590–601 (2006)Google Scholar
  7. 7.
    Giannogloua, G.D., Chatzizisisa, Y.S., Koutkiasb, V., Kompatsiarisc, I., Papadogiorgakic, M., Mezarisc, V., Parissic, E., Diamantopoulosd, P., Strintzisc, M.G., Maglaverasb, N., Parcharidisa, G.E., Louridasa, G.E.: A novel active contour model for fully automated segmentation of intravascular ultrasound images: In vivo validation in human coronay arteries. CBM 37, 1292–1302 (2007)Google Scholar
  8. 8.
    Plissiti, M.E., Fotiadis, D.I., Michalis, L.K., Bozios, G.E.: An automated method for lumen and media-adventitia border detection in a sequence of ivus frames. TITB 8(2), 131–141 (2004)Google Scholar
  9. 9.
    Kumar, S., Hebert, M.: Discriminative random fields. IJCV 68(2), 179–201 (2006)CrossRefGoogle Scholar
  10. 10.
    Ciompi, F., Pujol, O., Gatta, C., Rodriguez-Leor, O., Mauri-Ferre, J., Radeva, P.: Fusing in-vitro and in-vivo intravascular ultrasound data for plaque characterization. IJCI 26, 763–779 (2010)Google Scholar
  11. 11.
    Ciompi, F., Pujol, O., Fernandez-Nofrerias, E., Mauri, J., Radeva, P.: Ecoc random fields for lumen segmentation in radial artery ivus sequences. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 869–876. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Sathyaranayana, S., Carlier, S., Wenguang, L., Thomas, L.: Characterization of atherosclerotic plaque by spectral similarity of radiofrequency intravascular ultrasound signals. EuroIntervention 5, 133–139 (2009)CrossRefGoogle Scholar
  13. 13.
    Ciompi, F., Pujol, O., Radeva, P.: A meta-learning approach to conditional random fields using error-correcting output codes. In: IEEE International Conference on Pattern Recognition (ICPR), pp. 710–713 (2010)Google Scholar
  14. 14.
    Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. JAIR 2, 263–286 (1995)MATHGoogle Scholar
  15. 15.
    Bautista, M.A., Baro, X., Pujol, O., Radeva, P., Vitria, J., Escalera, S.: Compact evolutive design of error-correcting output codes. In: ECML (2010)Google Scholar
  16. 16.
    Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its generalizations. (TR-2001-22), pp. 239–269 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Francesco Ciompi
    • 1
    • 2
  • Oriol Pujol
    • 1
    • 2
  • Carlo Gatta
    • 1
    • 2
  • Xavier Carrillo
    • 3
  • Josepa Mauri
    • 3
  • Petia Radeva
    • 1
    • 2
  1. 1.Dep. of Applied Mathematics and AnalysisUniversity of BarcelonaSpain
  2. 2.Computer Vision CenterCampus UABBarcelonaSpain
  3. 3.University Hospital “Germans Trias i Pujol”BadalonaSpain

Personalised recommendations