Advertisement

Learning Pit Pattern Concepts for Gastroenterological Training

  • Roland Kwitt
  • Nikhil Rasiwasia
  • Nuno Vasconcelos
  • Andreas Uhl
  • Michael Häfner
  • Friedrich Wrba
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6893)

Abstract

In this article, we propose an approach to learn the characteristics of colonic mucosal surface structures, the so called pit patterns, commonly observed during high-magnification colonoscopy. Since the discrimination of the pit pattern types usually requires an experienced physician, an interesting question is whether we can automatically find a collection of images which most typically show a particular pit pattern characteristic. This is of considerable practical interest, since it is imperative for gastroenterological training to have a representative image set for the textbook descriptions of the pit patterns. Our approach exploits recent research on semantic image retrieval and annotation. This facilitates to learn a semantic space for the pit pattern concepts which eventually leads to a very natural formulation of our task.

Keywords

Narrow Band Imaging Semantic Level Semantic Space Average Error Rate Confocal Laser Endomicroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    André, B., Vercauteren, T., Perchant, A., Buchner, A.M., Wallace, M.B., Ayache, N.: Endomicroscopic image retrieval and classification using invariant visual features. In: Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2009), Boston, MA, USA, pp. 346–349 (June 2009)Google Scholar
  2. 2.
    Carneiro, G., Vasconcelos, N.: Formulating semantic image annotation as a supervised learning problem. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, pp. 163–168 (June 2005)Google Scholar
  3. 3.
    East, J.E., Suzuki, N., Saunders, B.P.: Comparison of magnified pit pattern interpretation with narrow band imaging versus chromoendoscopy for diminutive colonic polyps: A pilot study. Gastrointest. Endosc. 66(2), 310–316 (2007)CrossRefGoogle Scholar
  4. 4.
    Häfner, M., Gangl, A., Kwitt, R., Uhl, A., Vécsei, A., Wrba, F.: Improving pit-pattern classification of endoscopy images by a combination of experts. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 247–254. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Karkanis, S.A., Iakovidis, D., Karras, D., Maroulis, D.: Detection of lesions in endoscopic video using textural descriptors on wavelet domain supported by artificial neural network architectures. In: Proceedings of the IEEE International Conference on Image Processing (ICIP 2001), Thessaloniki, Greece, pp. 833–836 (October 2001)Google Scholar
  6. 6.
    Kudo, S., Hirota, S., Nakajima, T., Hosobe, S., Kusaka, H., Kobayashi, T., Himori, M., Yagyuu, A.: Colorectal tumours and pit pattern. J. Clin. Pathol. 47(10), 880–885 (1994)CrossRefGoogle Scholar
  7. 7.
    Kwitt, R., Uhl, A., Häfner, M., Gangl, A., Wrba, F., Vécsei, A.: Predicting the histology of colorectal lesions in a probabilistic framework. In: Proceedings of the IEEE International Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2010), San Francisco, CA, USA, pp. 103–110 (June 2010)Google Scholar
  8. 8.
    Rasiwasia, N., Moreno, P., Vasconcelos, N.: Bridging the gap: Query by semantic example. IEEE Trans. Multimedia 9(5), 923–938 (2007)CrossRefGoogle Scholar
  9. 9.
    Tischendorf, J.J.W., Gross, S., Winograd, R., Hecker, H., Auer, R., Behrens, A., Trautwein, C., Aach, T., Stehle, T.: Computer-aided classification of colorectal polyps based on vascular patterns: a pilot study. Endoscopy 42(3), 203–207 (2010)CrossRefGoogle Scholar
  10. 10.
    Vasconcelos, N., Lippman, A.: Image indexing with mixture hierachies. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2001), Kauai, HI, USA, pp. 3–10 (December 2001)Google Scholar
  11. 11.
    Vogelstein, B., Fearon, E.R., Hamilton, S.R., Kern, S.E., Preisinger, A.C., Leppert, M., Nakamura, Y., White, R., Smits, A.M., Bos, J.L.: Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319(9), 525–532 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Roland Kwitt
    • 1
  • Nikhil Rasiwasia
    • 2
  • Nuno Vasconcelos
    • 2
  • Andreas Uhl
    • 1
  • Michael Häfner
    • 3
  • Friedrich Wrba
    • 4
  1. 1.Dept. of Computer SciencesUniv. of SalzburgAustria
  2. 2.Dept. of Electrical and Computer EngineeringUniv. of CaliforniaSan DiegoUSA
  3. 3.Dept. of Internal MedicineSt. Elisabeth HospitalViennaAustria
  4. 4.Dept. of Clinical PathologyVienna Medical Univ.Austria

Personalised recommendations