Advertisement

Lung Texture Classification Using Locally–Oriented Riesz Components

  • Adrien Depeursinge
  • Antonio Foncubierta-Rodriguez
  • Dimitri Van de Ville
  • Henning Müller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6893)

Abstract

We develop a texture analysis framework to assist radiologists in interpreting high–resolution computed tomography (HRCT) images of the lungs of patients affected with interstitial lung diseases (ILD). Novel texture descriptors based on the Riesz transform are proposed to analyze lung texture without any assumption on prevailing scales and orientations. A global classification accuracy of 78.3% among five lung tissue types is achieved using locally–oriented Riesz components. Comparative performance analysis with features derived from optimized grey–level co–occurrence matrices showed an absolute gain of 6.1% in classification accuracy. The adaptability of the Riesz features is demonstrated by reconstructing templates according to the first principal components of the lung textures. The balanced performance achieved among the various lung textures suggest that the proposed methods can complement human observers in HRCT interpretation, and opens interesting perspectives for future research.

Keywords

Texture analysis Riesz transform interstitial lung diseases high–resolution computed tomography computer–aided diagnosis 

References

  1. 1.
    Tourassi, G.D.: Journey toward computer–aided diagnosis: Role of image texture analysis. Radiology 213(2), 317–320 (1999)CrossRefGoogle Scholar
  2. 2.
    Berlin, L.: Malpractice issues in radiology. perceptual errors. AJR Am. J. Roentgenol. 167(3), 587–590 (1996)CrossRefGoogle Scholar
  3. 3.
    Castellano, G., Bonilha, L., Li, L.M., Cendes, F.: Texture analysis of medical images. Clin. Radiol. 59(12), 1061–1069 (2004)CrossRefGoogle Scholar
  4. 4.
    Webb, W.R., Müller, N.L., Naidich, D.P.: High–Resolution CT of the Lung. Lippincott Williams & Wilkins, Philadelphia (2001)Google Scholar
  5. 5.
    Delorme, S., Keller–Reichenbecher, M.A., Zuna, I., Schlegel, W., Van Kaick, G.: Usual interstitial pneumonia: Quantitative assessment of high–resolution computed tomography findings by computer–assisted texture–based image analysis. Invest. Radiol. 32(9), 566–574 (1997)CrossRefGoogle Scholar
  6. 6.
    Uppaluri, R., Hoffman, E.A., Sonka, M., Hunninghake, G.W., McLennan, G.: Interstitial lung disease: A quantitative study using the adaptive multiple feature method. Am. J. Respir. Crit. Care Med. 159(2), 519–525 (1999)CrossRefGoogle Scholar
  7. 7.
    Sluimer, I.C., van Waes, P.F., Viergever, M.A., van Ginneken, B.: Computer–aided diagnosis in high resolution CT of the lungs. Med. Phy. 30(12), 3081–3090 (2003)CrossRefGoogle Scholar
  8. 8.
    Sørensen, L., Shaker, S.B., de Bruijne, M.: Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans. Med. Imaging 29(2), 559–569 (2010)CrossRefGoogle Scholar
  9. 9.
    Depeursinge, A.: Affine–invariant texture analysis and retrieval of 3D medical images with clinical context integration. PhD thesis, University of Geneva (2010)Google Scholar
  10. 10.
    Xu, Y., Sonka, M., McLennan, G., Guo, J., Hoffman, E.A.: MDCT–based 3D texture classification of emphysema and early smoking related lung pathologies. IEEE Trans. Med. Imaging 25(4), 464–475 (2006)CrossRefGoogle Scholar
  11. 11.
    Caban, J.J., Yao, J., Avila, N.A., Fontana, J.R., Manganiello, V.C.: Texture–based computer–aided diagnosis system for lung fibrosis. In: Giger, M.L., Karssemeijer, N. (eds.) Medical Imaging 2007: Computer–Aided Diagnosis, vol. 6514. SPIE, San Jose (2007)Google Scholar
  12. 12.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man and Cybern. 3(6), 610–621 (1973)CrossRefGoogle Scholar
  13. 13.
    Depeursinge, A., Sage, D., Hidki, A., Platon, A., Poletti, P.A., Unser, M., Müller, H.: Lung tissue classification using Wavelet frames. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 6259–6262. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  14. 14.
    Sørensen, L., Lo, P., Ashraf, H., Sporring, J., Nielsen, M., de Bruijne, M.: Learning COPD sensitive filters in pulmonary CT. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 699–706. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Unser, M., Van De Ville, D.: Wavelet steerability and the higher–order Riesz transform. IEEE Trans. Imag. Proc. 19(3), 636–652 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Depeursinge, A., Vargas, A., Platon, A., Geissbuhler, A., Poletti, P.A., Müller, H.: Building a reference multimedia database for interstitial lung diseases. Comput. Med. Imaging. Graph. (to appear)Google Scholar
  17. 17.
    Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton (1971)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Adrien Depeursinge
    • 1
    • 2
  • Antonio Foncubierta-Rodriguez
    • 1
  • Dimitri Van de Ville
    • 2
    • 3
  • Henning Müller
    • 1
    • 2
  1. 1.University of Applied Sciences Western Switzerland (HES-SO)Switzerland
  2. 2.University and University Hospitals of Geneva (HUG)Switzerland
  3. 3.Ecole Polytechnique Féedéerale de Lausanne (EPFL)Switzerland

Personalised recommendations