Motion Compensated Magnetic Resonance Reconstruction Using Inverse-Consistent Deformable Registration: Application to Real-Time Cine Imaging

  • Hui Xue
  • Yu Ding
  • Christoph Guetter
  • Marie-Pierre Jolly
  • Jens Guehring
  • Sven Zuehlsdorff
  • Orlando P. Simonetti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)

Abstract

Patient motion is a major limitation for magnetic resonance imaging. Recent theoretical advances incorporate explicit rigid and non-rigid motion compensation into conventional image reconstruction for multi-shot acquisitions and recover motion-free images by solving a general matrix inversion problem. Although the theory has been established, applications are rare due to the challenges of estimating motion field for every pixel of every shot. In this paper we propose a method to overcome this difficulty using the inverse-consistent deformable registration supplying both forward and backward deformations for matrix inversion. We further extend this framework for multi-coil motion compensated image reconstruction using the eigen-mode analysis. Both simulations and in vivo studies demonstrate the effectiveness of our approach.

Keywords

Motion Compensation Deformation Field Coil Sensitivity Chest Wall Motion Cardiac Cine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Atkinson, D.: Motion Correction. Sunrise Course: Image Reconstruction. In: ISMRM (2011)Google Scholar
  2. 2.
    Batchelor, P.G., Atkinson, D., Irarrazaval, P., Hill, D., Hajnal, J., Larkman, D.: Matrix description of general motion correction applied to multishot images. MRM 54(5), 1273–1280 (2005)CrossRefGoogle Scholar
  3. 3.
    Odille, F., Vuissoz, P., Marie, P., Felblinger, J.: Generalized Reconstruction by Inversion of Coupled Systems (GRICS) applied to free-breathing MRI. MRM 60(1), 146–157 (2008)CrossRefGoogle Scholar
  4. 4.
    Christensen, G.E., Johnson, H.J.: Consistent image registration. TMI 20(7), 568–582 (2001)Google Scholar
  5. 5.
    Hernandez, M., Bossa, M., Olmos, S.: Registration of anatomical images using paths of diffeomorphisms parameterized with stationary vector field flows. IJCV 85, 291–306 (2009)CrossRefGoogle Scholar
  6. 6.
    Guetter, C., Xue, H., Chefd’hotel, C., Guehring, J.: Efficient symmetric and inverse-consistent deformable registration through interleaved optimization. IEEE ISBI (2011)Google Scholar
  7. 7.
    Jolliffe, I.: Principal component analysis. Springer, New York (2002)MATHGoogle Scholar
  8. 8.
    Breuer, F., Kellman, P., Griswold, M., Jakob, P.: Dynamic Autocalibrated parallel imaging using Temporal GRAPPA (TGRAPPA). MRM 53, 981–985 (2005)CrossRefGoogle Scholar
  9. 9.
    Kellman, P., Epstein, F., McVeigh, E.: Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). MRM 45(5), 846–852 (2001)CrossRefGoogle Scholar
  10. 10.
    Ding, Y., Chung, Y., Simonetti, O.P.: A method to assess spatially variant noise in dynamic MR image series. MRM 63, 782–789 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hui Xue
    • 1
  • Yu Ding
    • 2
  • Christoph Guetter
    • 1
  • Marie-Pierre Jolly
    • 1
  • Jens Guehring
    • 4
  • Sven Zuehlsdorff
    • 3
  • Orlando P. Simonetti
    • 2
  1. 1.Imaging Analytics and InformaticsSiemens Corporate ResearchPrincetonUSA
  2. 2.Davis Heart and Lung Research InstituteThe Ohio State UniversityUSA
  3. 3.CMR R&DSiemens Medical Solutions USA, IncChicagoUSA
  4. 4.Imaging & IT DivisionSiemens AG, Healthcare SectorErlangenGermany

Personalised recommendations