Using High Resolution Cardiac CT Data to Model and Visualize Patient-Specific Interactions between Trabeculae and Blood Flow

  • Scott Kulp
  • Mingchen Gao
  • Shaoting Zhang
  • Zhen Qian
  • Szilard Voros
  • Dimitris Metaxas
  • Leon Axel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)

Abstract

In this paper, we present a method to simulate and visualize blood flow through the human heart, using the reconstructed 4D motion of the endocardial surface of the left ventricle as boundary conditions. The reconstruction captures the motion of the full 3D surfaces of the complex features, such as the papillary muscles and the ventricular trabeculae. We use visualizations of the flow field to view the interactions between the blood and the trabeculae in far more detail than has been achieved previously, which promises to give a better understanding of cardiac flow. Finally, we use our simulation results to compare the blood flow within one healthy heart and two diseased hearts.

Keywords

Cardiac Cycle Average Residence Time Healthy Heart Heart Wall Estimate Ejection Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    de Zelicourt, D., Ge, L., Wang, C., Sotiropoulos, F., Gilmanov, A., Yoganathan, A.: Flow simulations in arbitrarily complex cardiovascular anatomies - an unstructured cartesian grid approach. Computers & Fluids 38(9), 1749–1762 (2009)CrossRefMATHGoogle Scholar
  2. 2.
    Foster, N., Metaxas, D.: Realistic animation of liquids. Graph. Models Image Process. 58, 471–483 (1996)CrossRefGoogle Scholar
  3. 3.
    Gao, M., Huang, J., Zhang, S., Qian, Z., Voros, S., Metaxas, D., Axel, L.: 4D cardiac reconstruction using high resolution ct images. In: Metaxas, D., Axel, L. (eds.) FIMH (2011)Google Scholar
  4. 4.
    Gilmanov, A., Sotiropoulos, F.: A hybrid cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J. Comput. Phys. 207(2), 457–492 (2005)CrossRefMATHGoogle Scholar
  5. 5.
    Jones, T.N., Metaxas, D.: Patient-specific analysis of left ventricular blood flow. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 156–166. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Krittian, S., Janoske, U., Oertel, H., Bhlke, T.: Partitioned fluid-solid coupling for cardiovascular blood flow. Annals of Biomedical Engineering 38, 1426–1441 (2010)CrossRefGoogle Scholar
  7. 7.
    Kulp, S., Metaxas, D., Qian, Z., Voros, S., Axel, L., Mihalef, V.: Patient-specific modeling and visualization of blood flow through the heart. In: Wright, S., Pan, X., Liebling, M. (eds.) ISBI (2011)Google Scholar
  8. 8.
    Long, Q., Merrifield, R., Yang, G.Z., Xu, X.Y., Kilner, P.J., Firmin, D.N.: The influence of inflow boundary conditions on intra left ventricle flow predictions. Journal of Biomechanical Engineering 125(6), 922–927 (2003)CrossRefGoogle Scholar
  9. 9.
    Mihalef, V., Ionasec, R., Wang, Y., Zheng, Y., Georgescu, B., Comaniciu, D.: Patient-specific modeling of left heart anatomy, dynamics and hemodynamics from high resolution 4d CT. In: Niessen, W., Meijering, E. (eds.) ISBI, pp. 504–507 (2010)Google Scholar
  10. 10.
    Mihalef, V., Metaxas, D., Sussman, M.: Textured liquids based on the marker level set. Comput. Graph. Forum 26(3), 457–466 (2007)CrossRefGoogle Scholar
  11. 11.
    Plank, G., Burton, R., Hales, P., Bishop, M., Mansoori, T., Burton, M., Garny, A., Prassl, A., Bollensdorff, C., Mason, F., Mahmood, F., Rodriguez, B., Grau, V., Schneider, J., Gavaghan, D., Kohl, P.: Generation of histo-anatomically representative models of the individual heart: tools and application. In: Phil. Trans. Roy. Soc. (2009)Google Scholar
  12. 12.
    Sussman, M.: A parallelized, adaptive algorithm for multiphase flows in general geometries. Comput. Struct. 83(6-7), 435–444 (2005)CrossRefGoogle Scholar
  13. 13.
    Yokoi, K., Xiao, F., Liu, H., Fukasaku, K.: Three-dimensional numerical simulation of flows with complex geometries in a regular cartesian grid and its application to blood flow in cerebral artery with multiple aneurysms. Journal of Computational Physics 202(1), 1–19 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Scott Kulp
    • 1
  • Mingchen Gao
    • 1
  • Shaoting Zhang
    • 1
  • Zhen Qian
    • 2
  • Szilard Voros
    • 2
  • Dimitris Metaxas
    • 1
  • Leon Axel
    • 3
  1. 1.CBIM CenterRutgers UniversityPiscatawayUSA
  2. 2.Piedmont Heart InstituteAtlantaUSA
  3. 3.New York UniversityNew YorkUSA

Personalised recommendations