Biomechanical Simulation of Electrode Migration for Deep Brain Stimulation

  • Alexandre Bilger
  • Jérémie Dequidt
  • Christian Duriez
  • Stéphane Cotin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)

Abstract

Deep Brain Stimulation is a modern surgical technique for treating patients who suffer from affective or motion disorders such as Parkinson’s disease. The efficiency of the procedure relies heavily on the accuracy of the placement of a micro-electrode which sends electrical pulses to a specific part of the brain that controls motion and affective symptoms. However, targeting this small anatomical structure is rendered difficult due to a series of brain shifts that take place during and after the procedure. This paper introduces a biomechanical simulation of the intra and postoperative stages of the procedure in order to determine lead deformation and electrode migration due to brain shift. To achieve this goal, we propose a global approach, which accounts for brain deformation but also for the numerous interactions that take place during the procedure (contacts between the brain and the inner part of the skull and falx cerebri, effect of the cerebro-spinal fluid, and biomechanical interactions between the brain and the electrodes and cannula used during the procedure). Preliminary results show a good correlation between our simulations and various results reported in the literature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abolhassani, N., Patel, R., Moallem, M.: Needle insertion into soft tissue: A survey. Medical Engineering & Physics 29(4), 413 (2007)CrossRefGoogle Scholar
  2. 2.
    Bucki, M., Lobos, C., Payan, Y.: Framework for a low-cost intra-operative image-guided neuronavigator including brain shift compensation. In: IEEE Engineering in Medicine and Biology Society, pp. 872–875 (2007)Google Scholar
  3. 3.
    Clatz, O., Delingette, H., Talos, I.F., Golby, A.J., Kikinis, R., Jolesz, F.A., Ayache, N., Warfield, S.K.: Robust nonrigid registration to capture brain shift from intraoperative mri. IEEE Transactions on Medical Imaging 24(11), 1417–1427 (2005)CrossRefGoogle Scholar
  4. 4.
    Deep-Brain Stimulation for Parkinson’s Disease Study Group: Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in parkinson’s disease. N. Engl. J. Med. 345(13), 956–963 (2001)Google Scholar
  5. 5.
    Duriez, C., Guébert, C., Marchal, M., Cotin, S., Grisoni, L.: Interactive simulation of flexible needle insertions based on constraint models. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 291–299. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Kim, Y.H., Kim, H.J., Kim, C., Kim, D.G., Jeon, B.S., Paek, S.H.: Comparison of electrode location between immediate postoperative day and 6 months after bilateral subthalamic nucleus stimulation. Acta Neurochir 152(12), 2037–2045 (2010)CrossRefGoogle Scholar
  7. 7.
    Kruse, S.A., Rose, G.H., Glaser, K.J., Manduca, A., Felmlee, J.P., Jack Jr., C.R., Ehman, R.L.: Magnetic resonance elastography of the brain. NeuroImage 39(1), 231–237 (2008)CrossRefGoogle Scholar
  8. 8.
    Lunn, K.E., Paulsen, K.D., Lynch, D.R., Roberts, D.W., Kennedy, F.E., Hartov, A.: Assimilating intraoperative data with brain shift modeling using the adjoint equations. Medical Image Analysis 9(3), 281–293 (2005)CrossRefGoogle Scholar
  9. 9.
    Lurig, C., Hastreiter, P., Nimsky, C., Ertl, T.: Analysis and visualization of the brain shift phenomenon in neurosurgery. In: TCVG Symposium on Visualization (VisSym), pp. 285–290 (1999)Google Scholar
  10. 10.
    Miga, M., Paulsen, K., Hoopes, P., Kennedy Jr., F., Hartov, A., Roberts, D.: In vivo quantification of a homogeneous brain deformation model for updating preoperative images during surgery. Biomedical Engineering 47(2), 266–273 (2000)Google Scholar
  11. 11.
    Miller, K., Wittek, A., Joldes, G.: Biomechanics of the brain for computer-integrated surgery. publishing House of Warsaw University of Technology (2002)Google Scholar
  12. 12.
    Miyagi, Y., Shima, F., Sasaki, T.: Brain shift: an error factor during implantation of deep brain stimulation electrodes. Journal of Neurosurgery 107(5), 989–997 (2007)CrossRefGoogle Scholar
  13. 13.
    Munckhof, P.V.D., Contarino, M.F., Bour, L.J., Speelman, J.D., Bie, R.M.A.D., Schuurman, P.R.: Postoperative curving and upward displacement of deep brain stimulation electrodes caused by brain shift. Journal of Neurosurgery 67(1), 49–54 (2010)CrossRefGoogle Scholar
  14. 14.
    Wittek, A., Miller, K., Kikinis, R., Warfield, S.K.: Patient-specific model of brain deformation: Application to medical image registration. Journal of Biomechanics 40(4), 919–929 (2007)CrossRefGoogle Scholar
  15. 15.
    Zhang, C., Wang, M., Song, Z.: A brain-deformation framework based on a linear elastic model and evaluation using clinical data. Transactions on Biomedical Engineering 58(1), 1–9 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexandre Bilger
    • 1
  • Jérémie Dequidt
    • 1
  • Christian Duriez
    • 1
  • Stéphane Cotin
    • 1
  1. 1.SHAMAN GroupINRIALilleFrance

Personalised recommendations