Preconditioner-Based Contact Response and Application to Cataract Surgery

  • Hadrien Courtecuisse
  • Jérémie Allard
  • Christian Duriez
  • Stéphane Cotin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)


In this paper we introduce a new method to compute, in real-time, the physical behavior of several colliding soft-tissues in a surgical simulation. The numerical approach is based on finite element modeling and allows for a fast update of a large number of tetrahedral elements. The speed-up is obtained by the use of a specific preconditioner that is updated at low frequency. The preconditioning enables an optimized computation of both large deformations and precise contact response. Moreover, homogeneous and inhomogeneous tissues are simulated with the same accuracy. Finally, we illustrate our method in a simulation of one step in a cataract surgery procedure, which require to handle contacts with non homogeneous objects precisely.


Contact Force Cataract Surgery Compliance Matrix Homogeneous Object Eurographics Association 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Allard, J., Courtecuisse, H., Faure, F.: Implicit FEM solver on GPU for interactive deformation simulation. In: GPU Computing Gems Jade Edition, ch.21, Elsevier, Amsterdam (2011)Google Scholar
  2. 2.
    Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proc. of SIGGRAPH 1998, pp. 43–54. ACM, New York (1998)Google Scholar
  3. 3.
    Choi, K.S., Soo, S., Chung, F.L.: A virtual training simulator for learning cataract surgery with phacoemulsification. Comput. Biol. Med. 39(11), 1020–1031 (2009)CrossRefGoogle Scholar
  4. 4.
    Comas, O., Cotin, S., Duriez, C.: A shell model for real-time simulation of intra-ocular implant deployment. In: Bello, F., Cotin, S. (eds.) ISBMS 2010. LNCS, vol. 5958, pp. 160–170. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Courtecuisse, H., Allard, J., Duriez, C., Cotin, S.: Asynchronous preconditioners for efficient solving of non-linear deformations. In: Erleben, K., Bender, J., Teschner, M. (eds.) VRIPHYS, pp. 59–68. Eurographics Association (2010)Google Scholar
  6. 6.
    Galoppo, N., Otaduy, M.A., Mecklenburg, P., Gross, M., Lin, M.: Fast simulation of deformable models in contact using dynamic deformation textures. In: Cani, M.-P., O’Brien, J. (eds.) SCA, pp. 73–82. Eurographics Association (2006)Google Scholar
  7. 7.
  8. 8.
    Lenoir, J., Grisoni, L., Meseure, P., Rémion, Y., Chaillou, C.: Smooth constraints for spline variational modeling. In: GRAPHITE 2004, pp. 58–64. ACM, New York (2004)Google Scholar
  9. 9.
    Nesme, M., Payan, Y., Faure, F.: Efficient, physically plausible finite elements. In: Eurographics (short papers), pp. 77–80. Eurographics Association (2005)Google Scholar
  10. 10.
    Popescu, D., Compton, M.: A model for efficient and accurate interaction with elastic objects in haptic virtual environments. In: GRAPHITE 2003, pp. 245–250. ACM, New York (2003)Google Scholar
  11. 11.
    Saupin, G., Duriez, C., Cotin, S., Grisoni, L.: Efficient contact modeling using compliance warping. In: Computer Graphics International Conference (2008)Google Scholar
  12. 12.
    Saupin, G., Duriez, C., Cotin, S.: Contact model for haptic medical simulations. In: Bello, F., Edwards, E. (eds.) ISBMS 2008. LNCS, vol. 5104, pp. 157–165. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hadrien Courtecuisse
    • 1
  • Jérémie Allard
    • 1
  • Christian Duriez
    • 1
  • Stéphane Cotin
    • 1
  1. 1.SHAMAN GroupINRIALilleFrance

Personalised recommendations