Bronchoscopy Navigation beyond Electromagnetic Tracking Systems: A Novel Bronchoscope Tracking Prototype

  • Xiongbiao Luo
  • Takayuki Kitasaka
  • Kensaku Mori
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)

Abstract

A novel bronchoscope tracking prototype was designed and validated for bronchoscopic navigation. We construct a novel mouth- or nose-piece bronchoscope model to directly measure the movement information of a bronchoscope outside of a patient’s body. Fusing the measured movement information based on sequential Monte Carlo (SMC) sampler, we exploit accurate and robust intra-operative alignment between the pre- and intra-operative image data for augmenting surgical bronchoscopy. We validate our new prototype on phantom datasets. The experimental results demonstrate that our proposed prototype is a promising approach to navigate a bronchoscope beyond EMT systems.

Keywords

Ground Truth Data Orientation Error Sequential Monte Carlo Insertion Depth Virtual Bronchoscopic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schwarz, Y., Greif, J., Becker, H.D., Ernst, A., Mehta, A.: Real-time electromagnetic navigation bronchoscopy to peripheral lung lesions using overlaid CT images: the first human study. Chest 129(4), 988–994 (2006)CrossRefGoogle Scholar
  2. 2.
    Soper, T.D., Haynor, D.R., Glenny, R.W., Seibel, E.J.: In vivo validation of a hybrid tracking system for navigation of an ultrathin bronchoscope within peripheral airways. IEEE TBME 57(3), 736–745 (2010)Google Scholar
  3. 3.
    Deligianni, F., Chung, A.J., Yang, G.Z.: Nonrigid 2-D/3-D registration for patient specific bronchoscopy simulation with statistical shape modeling: Phantom validation. IEEE TMI 25(11), 1462–1471 (2006)Google Scholar
  4. 4.
    Deguchi, D., Mori, K., Feuerstein, M., Kitasaka, T., Maurer Jr., C.R., Suenaga, Y., Takabatake, H., Mori, M., Natori, H.: Selective image similarity measure for bronchoscope tracking based on image registration. MedIA 13(4), 621–633 (2009)Google Scholar
  5. 5.
    Luo, X., Feuerstein, M., Kitasaka, T., Mori, K.: A novel bronchoscope tracking method for bronchoscopic navigation using a low cost optical mouse sensor. In: Wong, K.H., Holmes, D.R. (eds.) SPIE Medical Imaging 2011, Florida USA, vol. 7964, pp. 79641T (2011)Google Scholar
  6. 6.
    Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. International Journal of Computer Vision 29(1), 5–28 (1998)CrossRefGoogle Scholar
  7. 7.
    Luo, X., Reichl, T., Feuerstein, M., Kitasaka, T., Mori, K.: Modified hybrid bronchoscope tracking based on sequential monte carlo sampler: Dynamic phantom validation. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494, pp. 409–421. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for nonlinear/non-gaussian Bayesian tracking. IEEE TSP 50(2), 174–188 (2002)Google Scholar
  9. 9.
    Schneider, M., Stevens, C.: Development and testing of a new magnetic-tracking device for image guidance. In: Cleary, K.R., Miga, M.I. (eds.) SPIE Medical Imaging 2007, California USA, vol. 6509, pp. 65090I (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xiongbiao Luo
    • 1
  • Takayuki Kitasaka
    • 2
  • Kensaku Mori
    • 3
    • 1
  1. 1.Graduate School of Information ScienceNagoya UniversityJapan
  2. 2.Faculty of Information ScienceAichi Institute of TechnologyJapan
  3. 3.Information and Communications HeadquartersNagoya UniversityJapan

Personalised recommendations