Advertisement

Nonlinear Equations of the First Order

  • S. N. Gurbatov
  • O. V. Rudenko
  • A. I. Saichev
Part of the Nonlinear Physical Science book series (NPS)

Abstract

The basic patterns of nonlinear fields and waves of the hydrodynamic type already can be discerned by the behavior of solutions to the simplest nonlinear partial differential equations of the first order. This chapter discusses solutions of such equations. Those wishing to study the theory of the first-order nonlinear equations more fully are advised to turn to the following literature: [1-4].

Keywords

Nonlinear Equation Directivity Pattern Optic Wave Hydrodynamic Type Riemann Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.I. Arnold, Ordinary differential equations (MIT Press, Cambridge, Mass, 1978)Google Scholar
  2. 2.
    M.I. Rabinovich, D.I. Trubetskov, Oscillations and Waves in Linear and Nonlinear Systems. (Springer, Berlin, 1989)zbMATHGoogle Scholar
  3. 3.
    G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)zbMATHGoogle Scholar
  4. 4.
    Y.B. Zeldovich, Elements of Mathematical Physics (Nauka, Moscow, 1973). In RussianGoogle Scholar
  5. 5.
    V.I. Karpman, Non-linear Waves in Dispersive Media (Pergamon Press, Oxford, 1974)Google Scholar
  6. 6.
    O.V. Rudenko, S.I. Soluyan, Theoretical Foundations of Nonlinear Acoustics (Plenum, New York, 1977)zbMATHGoogle Scholar
  7. 7.
    S.A. Lapinova, A.I. Saichev, V.A. Filimonov, Generalized Functions and Asymptotic Methods (Nizliny Novgorod University Press, 2006). In RussianGoogle Scholar
  8. 8.
    A.I. Saichev, W.A. Woyczynski, Distributions in the Physical and Engineering Sciences (Birkhäuser, Boston, 1997)zbMATHGoogle Scholar
  9. 9.
    A.L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, 1995)Google Scholar
  10. 10.
    M. Kardar, G. Parisi, Y.C. Zhang, Dynamical scaling of growing interlaces, Phys. Rev. Lett. 56, 889–892 (1986)ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    M. Schwartz, S.F. Edwards, Nonlinear deposition: a new approach, Europhys. Lett. 20, 301–305 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    W.A. Woyczynski, Burgers-KPZ Turbulence. Gottingen Lectures (Springer, Berlin, 1998)Google Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • S. N. Gurbatov
    • 1
  • O. V. Rudenko
    • 2
  • A. I. Saichev
    • 3
  1. 1.Radiophysics DepartmentNizhny Novgorod State UniversityNizhny NovgorodRussia
  2. 2.Physics DepartmentMoscow State UniversityMoscowRussia
  3. 3.Radiophysics DepartmentNizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations