Advertisement

Advances in Numerical Modelling of Adhesive Joints

  • Lucas F. M. da SilvaEmail author
  • Raul D. S. G. Campilho
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

The analysis of adhesively bonded joints started in 1938 with the closed-form model of Volkersen. The equilibrium equation of a single lap joint led to a simple governing differential equation with a simple algebraic equation. However, if there is yielding of the adhesive and/or the adherends and substantial peeling is present, a more complex model is necessary. The more complete is an analysis, the more complicated it becomes and the more difficult it is to obtain a simple and effective solution. The finite element (FE) method, the boundary element (BE) method and the finite difference (FD) method are the three major numerical methods for solving differential equations in science and engineering. These methods have also been applied to adhesive joints, especially the FE method. This book deals with the most recent numerical modelling of adhesive joints. Advances in damage mechanics and extended finite element method are described in the context of the FE method with examples of application. The classical continuum mechanics and fracture mechanics approach are also introduced. The BE method and the FD method are also discussed with indication of the cases they are most adapted to. There is not at the moment a numerical technique that can solve any problem and the analyst needs to be aware of the limitations involved in each case.

Keywords

Adhesive joints Finite element method Continuum mechanics Fracture mechanics Damage mechanics Extended finite element method Boundary element method Finite difference method 

References

  1. Abaqus® Documentation (2009) Dassault Systèmes, Vélizy-VillacoublayGoogle Scholar
  2. A. Abdul-Baqi, P.J.G. Schreurs, M.G.D. Geers, Fatigue damage modeling in solder interconnects using a cohesive zone approach. Int. J. Solids Struct. 42, 927–942 (2005)zbMATHGoogle Scholar
  3. R.D. Adams, R. Davies, Strength of joints involving composites. J. Adhesion 59, 171–182 (1996)Google Scholar
  4. R.D. Adams, R. Davies, Strength of lap shear joints, in The Mechanics of Adhesion, ed. by D.A. Dillard, A.V. Pocius (Elsevier, Amsterdam, 2002)Google Scholar
  5. R.D. Adams, J.A. Harris, Strength prediction of bonded single lap joints by nonlinear finite element methods. Int J Adhes Adhes 4, 65–78 (1984)Google Scholar
  6. R.D. Adams, J.A. Harris, The influence of local geometry on the strength of adhesive joints. Int. J. Adhes. Adhes. 7, 69–80 (1987)Google Scholar
  7. R.D. Adams, V. Mallick, A method for the stress analysis of lap joints. J. Adhesion 38, 199–217 (1992)Google Scholar
  8. R.D. Adams, N.A. Peppiatt, Effects of Poisson’s ratio strains in adherend on stresses of an idealized lap joint. J. Strain Anal. 8, 134–139 (1973)Google Scholar
  9. R.D. Adams, N.A. Peppiatt, Stress analysis of adhesive-bonded lap joints. J. Strain Anal. 9, 185–196 (1974)Google Scholar
  10. R.D. Adams, R.W. Atkins, J.A. Harris, A.J. Kinloch, Stress analysis and failure properties of carbon-fibre-reinforced-plastic/steel double-lap joints. J. Adhesion 20, 29–53 (1986)Google Scholar
  11. R.D. Adams, J. Comyn, W.C. Wake, Structural Adhesive Joints in Engineering, 2nd edn. (Chapman & Hall, London, 1997)Google Scholar
  12. G. Alfano, On the influence of the shape of the interface law on the application of cohesive-zone models. Compos. Sci. Technol. 66, 723–730 (2006)Google Scholar
  13. G. Alfano, M.A. Crisfield, Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int. J. Numer. Methods Eng. 50, 1701–1736 (2001)zbMATHGoogle Scholar
  14. O. Allix, A. Corigliano, Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens. Int. J. Fract. 77, 111–140 (1996)Google Scholar
  15. T. Andersson, U. Stigh, The stress-elongation relation for an adhesive layer loaded in peel using equilibrium of energetic forces. Int. J. Solids Struct. 41, 413–434 (2004)Google Scholar
  16. I. Ashcroft, Fatigue Load Conditions, in Handbook of Adhesion Technology, ed. by L.M.F. da Silva, A. Öchsner, R.D. Adams (Springer, Heidelberg, 2011)Google Scholar
  17. ASTM D3433-99 Standard, Standard Test Method for Fracture Strength in Cleavage of Adhesives in Bonded Metal Joints. ASTM International, West Conshohocken (2005)Google Scholar
  18. ASTM D4501-01, Standard Test Method for Shear Strength of Adhesive Bonds Between Rigid Substrates by The Block Shear Method (ASTM International, West Conshohocken, 2009)Google Scholar
  19. M.G. Bader, I. Hamerton, J.N. Hay, M. Kemp, S. Winchester, Double cantilever beam of repaired carbon fibre composites. Compos Part A 31, 603–608 (2000)Google Scholar
  20. M.D. Banea, L.F.M. da Silva, Adhesively bonded joints in composite materials: an overview. J. Mater. Design Appl. 223, 1–18 (2009)Google Scholar
  21. M.D. Banea, L.F.M. da Silva, R.D.S.G. Campilho, Temperature dependence of the fracture toughness of adhesively bonded joints. J. Adhesion Sci. Technol. 24, 2011–2026 (2010)Google Scholar
  22. M.D. Banea, L.F.M. da Silva, R.D.S.G. Campilho, Mode I fracture toughness of adhesively bonded joints as a function of temperature: experimental and numerical study. Int. J. Adhes. Adhes. 31, 273–279 (2011)Google Scholar
  23. G.I. Barenblatt, The formation of equilibrium cracks during brittle fracture. General ideas and hypothesis. Axisymmetrical cracks. J. Appl. Math. Mech. 23, 622–636 (1959)MathSciNetzbMATHGoogle Scholar
  24. G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)MathSciNetGoogle Scholar
  25. W.D. Bascom, R.L. Cottingham, Effect of temperature on the adhesive fracture behavior of an elastomer–epoxy resin. J. Adhesion 7, 333–346 (1976)Google Scholar
  26. W.D. Bascom, R.L. Cottingham, R.L. Jones, P. Peyser, The fracture of epoxy- and elastomer-modified epoxy polymers in bulk and as adhesives. J. Appl. Polymer Sci. 19, 2545–2562 (1975)Google Scholar
  27. A.J. Bell, A.J. Kinlock, The effect of the substrate material on the value of the adhesive fracture energy, G(c). J. Mater. Sci. Lett. 16, 150–1453 (1997)Google Scholar
  28. T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing. Int. J. Fract. Mech. 45, 601–620 (1999)zbMATHGoogle Scholar
  29. M.L. Benzeggagh, M. Kenane, Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56, 439–449 (1996)Google Scholar
  30. B. Bhattacharya, B. Ellingwood, Continuum damage mechanics analysis of fatigue crack initiation. Int. J. Fatigue 20, 631–639 (1998)Google Scholar
  31. A. Biel, Constitutive behaviour and fracture toughness of an adhesive layer. Licentiate of Engineering Dissertation, Chalmers University of Technology (2005)Google Scholar
  32. A. Biel, U. Stigh, Effects of constitutive parameters on the accuracy of measured fracture energy using the DCB-specimen. Eng. Fract. Mech. 75, 2968–2983 (2008)Google Scholar
  33. D.A. Bigwood, A.D. Crocombe, Non linear adhesive bonded joint design analysis. Int. J. Adhes. Adhes. 10, 31–41 (1990)Google Scholar
  34. B.R.K. Blackman, H. Hadavinia, A.J. Kinloch, J.G. Williams, The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints. Int. J. Fract. 119, 25–46 (2003)Google Scholar
  35. B.R.K. Blackman, A.J. Kinloch, M. Paraschi, The determination of the mode II adhesive fracture resistance, GIIC, of structural adhesive joints: an effective crack length approach. Eng. Fract. Mech. 72, 877–897 (2005)Google Scholar
  36. D. Bushnell, B.O. Almroth, F. Brogan, Finite-difference energy method for nonlinear shell analysis. Comput. Struct. 1, 361–387 (1971)Google Scholar
  37. R.D.S.G. Campilho, M.F.S.F. de Moura, J.J.M.S. Domingues, Modelling single and double-lap repairs on composite materials. Compos. Sci. Technol. 65, 1948–1958 (2005)Google Scholar
  38. R.D.S.G. Campilho, M.F.S.F. de Moura, J.J.M.S. Domingues, Stress and failure analyses of scarf repaired CFRP laminates using a cohesive damage model. J. Adhes. Sci. Technol. 21, 855–970 (2007)Google Scholar
  39. R.D.S.G. Campilho, M.F.S.F. de Moura, J.J.M.S. Domingues, Using a cohesive damage model to predict the tensile behaviour of CFRP single-strap repairs. Int. J. Solids Struct. 45, 1497–1512 (2008a)zbMATHGoogle Scholar
  40. R.D.S.G. Campilho, M.F.S.F. de Moura, J.J.M.S. Domingues, J.J.L. Morais, Computational modelling of the residual strength of repaired composite laminates using a cohesive damage model. J. Adhes. Sci. Technol. 22, 1565–1591 (2008b)Google Scholar
  41. R.D.S.G. Campilho, M.F.S.F. de Moura, J.J.M.S. Domingues, Numerical prediction on the tensile residual strength of repaired CFRP under different geometric changes. Int. J. Adhes. Adhes. 29, 195–205 (2009a)Google Scholar
  42. R.D.S.G. Campilho, M.F.S.F. de Moura, A.M.G. Pinto, J.J.L. Morais, J.J.M.S. Domingues, Modelling the tensile fracture behaviour of CFRP scarf repairs. Compos. Part B 40, 149–157 (2009b)Google Scholar
  43. R.D.S.G. Campilho, M.F.S.F. de Moura, D.A. Ramantani, J.J.L. Morais, J.J.M.S. Domingues, Tensile behaviour of three-dimensional carbon-epoxy adhesively bonded single- and double-strap repairs. Int. J. Adhes. Adhes. 29, 678–686 (2009c)Google Scholar
  44. R.D.S.G. Campilho, M.F.S.F. de Moura, D.A. Ramantani, J.J.L. Morais, A.M.J.P. Barreto, J.J.M.S. Domingues, Adhesively-bonded repair proposal for wood members damaged by horizontal shear using carbon-epoxy patches. J. Adhesion 86, 649–670 (2010)Google Scholar
  45. R.D.S.G. Campilho, M.D. Banea, A.M.G. Pinto, L.F.M. da Silva, A.M.P. de Jesus, Strength prediction of single- and double-lap joints by standard and extended finite element modelling. Int. J. Adhes. Adhes. 31, 363–372 (2011a)Google Scholar
  46. R.D.S.G. Campilho, A.M.G. Pinto, M.D. Banea, L.F.M. da Silva, Optimization study of hybrid spot welded-bonded single-lap joints. Int. J. Adhes. Adhes. (2011b) (accepted)Google Scholar
  47. R.D.S.G. Campilho, M.D. Banea, F.J.P. Chaves, L.F.M. da Silva, Modelling of single-lap joints using cohesive zones models: effect of the cohesive parameters on the output of the simulations. J. Adhesion (2011c) (accepted)Google Scholar
  48. R.D.S.G. Campilho, M.D. Banea, F.J.P. Chaves, L.F.M. da Silva, eXtended Finite Element Method for fracture characterization of adhesive joints in pure mode I. Comput. Mater. Sci. 50, 1543–1549 (2011d)Google Scholar
  49. R.D.S.G. Campilho, Modelação da Execução de Reparações em Materiais Compósitos. M.Sc. Dissertation, Engineering Faculty of Porto University (2005)Google Scholar
  50. R.D.S.G. Campilho, Repair of composite and wood structures. Ph.D. Dissertation, Engineering Faculty of Porto University (2009)Google Scholar
  51. T. Carlberger, U. Stigh, An explicit FE-model of impact fracture in an adhesive joint. Eng. Fract. Mech. 74, 2247–2262 (2007)Google Scholar
  52. T. Carlberger, U. Stigh, Influence of layer thickness on cohesive properties of an epoxy-based adhesive—an experimental study. J. Adhesion 86, 814–833 (2010)Google Scholar
  53. T. Carlberger, A. Biel, U. Stigh, Influence of temperature and strain rate on cohesive properties of a structural epoxy adhesive. Int. J. Fract. 155, 155–166 (2009)Google Scholar
  54. M.N. Cavalli, M.D. Thouless, The effect of damage nucleation on the toughness of an adhesive joint. J. Adhesion 76, 75–92 (2001)Google Scholar
  55. G. Cavallini, G. Davi, A. Milazzo, Boundary element modeling and analysis of adhesive bonded structural joints. Electron. J. Bound Elem. 4, 31–48 (2006)MathSciNetGoogle Scholar
  56. H. Chai, Bond thickness effect in adhesive joints and its significance for mode I interlaminar fracture of composites. ASTM STP 893, 209–231 (1986a) Google Scholar
  57. H. Chai, On the correlation between the mode I failure of adhesive joints and laminated composites. Eng. Fract. Mech. 24, 413–431 (1986b)Google Scholar
  58. H. Chai, Shear fracture. Int. J. Fract. 37, 137–159 (1988)Google Scholar
  59. H. Chai, Experimental evaluation of mixed-mode fracture in adhesive bonds. Experimental Mech. 32, 296–303 (1992)Google Scholar
  60. N. Chandra, H. Li, C. Shet, H. Ghonem, Some issues in the application of cohesive zone models for metal–ceramic interfaces. Int. J. Solids Struct. 39, 2827–2855 (2002)zbMATHGoogle Scholar
  61. M. Charalambides, A.J. Kinloch, Y. Wang, J.G. Williams, On the analysis of mixed mode failure. Int. J. Fracture 54, 269–291 (1992)Google Scholar
  62. J. Chen, Predicting progressive delamination of stiffened fibre-composite panel and by decohesion models. J. Thermopl. Compos. Mater. 15, 429–441 (2002)Google Scholar
  63. Z. Chen, R.D. Adams, L.F.M. da Silva, The use of the J-integral to analyse adhesive bonds with and without a crack. Int. J. Adhes. Adhes. 31, 48–55 (2011a)Google Scholar
  64. Z. Chen, R.D. Adams, L.F.M. da Silva, Prediction of crack initiation and propagation of adhesive lap joints using an energy failure criterion. Eng. Fract. Mech. 78, 990–1007 (2011b)Google Scholar
  65. P.T. Cheuk, L. Tong, A.N. Rider, J. Wang, Analysis of energy release rate for fatigue cracked metal-to-metal double-lap shear joints. Int. J. Adhes. Adhes. 25, 181–191 (2005)Google Scholar
  66. J.Y. Choi, H.J. Kim, J.K. Lim, Y.W. Mai, Numerical analysis of adhesive thickness effect on fracture toughness in adhesive-bonded joints. Key Eng. Mat. 270–273, 1200–1205 (2004)Google Scholar
  67. N. Choupani, Interfacial mixed-mode fracture characterization of adhesively bonded joints. Int. J. Adhes. Adhes. 28, 267–282 (2008)Google Scholar
  68. J.D. Clarke, I.J. Mcgregor, Ultimate tensile stress over a zone: a new failure criterion for adhesive joints. J. Adhes. 42, 227–245 (1993)Google Scholar
  69. L. Collatz, The Numerical Treatment of Differential Equations (Springer, Berlin, 1966)Google Scholar
  70. R.D. Cook, Finite Element Modeling for Stress Analysis (Wiley, New York, 1995)zbMATHGoogle Scholar
  71. R. Courant, Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc. 49, 1–23 (1943)MathSciNetzbMATHGoogle Scholar
  72. J.H. Crews, K.N. Shivakumar, I.S. Raju, Factors influencing elastic stresses in double cantilever beam specimens. ASTM STP 981, 119–132 (1988)Google Scholar
  73. A.D. Crocombe, Global yielding as a failure criteria for bonded joints. Int. J. Adhes. Adhes. 9, 145–153 (1989)Google Scholar
  74. A.D. Crocombe, R.D. Adams, Influence of the spew fillet and other parameters on the stress distribution in the single lap joint. J. Adhes. 13, 141–155 (1981)Google Scholar
  75. A.D. Crocombe, D.A. Bigwood, Development of a full elasto-plastic adhesive joint design. J. Strain Anal. Eng. Des. 27, 211–218 (1992)Google Scholar
  76. A.D. Crocombe, Y.X. Hua, W.K. Loh, M.A. Wahab, I.A. Ashcroft, Predicting the residual strength for environmentally degraded adhesive lap joints. Int. J. Adhes. Adhes. 26, 325–336 (2006)Google Scholar
  77. R.W. Clough, Second ASCE Conference on Electronic Computation, Pittsburgh, PA (1960)Google Scholar
  78. W. Cui, M.R. Wisnom, A combined stress-based and fracture-mechanics-based model for predicting delamination in composites. Composites 24, 467–474 (1993)Google Scholar
  79. L.F.M. da Silva, G.W. Critchlow, M.A.V. Figueiredo, Parametric study of adhesively bonded single lap joints by the Taguchi method. J. Adhes. Sci. Technol. 22(13), 1477–1494 (2008)Google Scholar
  80. L.F.M. da Silva, R.J.C. Carbas, G.W. Critchlow, M.A.V. Figueiredo, K. Brown, Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints. Int. J. Adhes. Adhes. 29, 621–632 (2009a)Google Scholar
  81. L.F.M. da Silva, P.J.C. das Neves, R.D. Adams, J.K. Spelt, Analytical models of adhesively bonded joints—Part I: literature survey. Int. J. Adhes. Adhes. 29, 319–330 (2009b)Google Scholar
  82. L.F.M. da Silva, P.J.C. das Neves, R.D. Adams, A. Wang, J.K. Spelt, Analytical models of adhesively bonded joints—part II: comparative study. Int. J. Adhes. Adhes. 29, 331–341 (2009c)Google Scholar
  83. L.F.M. da Silva, R.F.T. Lima, R.M.S. Teixeira, Development of a software for the design of adhesive joints. J. Adhes. 85, 889–918 (2009d)Google Scholar
  84. L.F.M. da Silva, A. Öchsner, R.D. Adams (eds.), Handbook of Adhesion Technology (Springer, Heidelberg, 2011)Google Scholar
  85. L. Daudeville, P. Ladeveze, A damage mechanics tool for laminate delamination. Compos. Struct. 25, 547–555 (1993)Google Scholar
  86. C. Daux, N. Moës, J. Dolbow, N. Sukumark, T. Belytschko, Arbitrary branched and intersecting cracks with the extended finite element method. Int. J. Numer. Meth. Eng. 48, 1741–1760 (2000)zbMATHGoogle Scholar
  87. M.F.S.F. de Moura, R.D.S.G. Campilho, J.P.M. Gonçalves, Crack equivalent concept applied to the fracture characterization of bonded joints under pure mode I loading. Compos. Sci. Technol. 68, 2224–2230 (2008)Google Scholar
  88. M.F.S.F. de Moura, R.D.S.G. Campilho, J.P.M. Gonçalves, Pure mode II fracture characterization of composite bonded joints. Int. J. Solids Struct. 46, 1589–1595 (2009)Google Scholar
  89. D.A. Dillard, H.K. Singh, D.J. Pohlit, Observations of decreased fracture toughness for mixed mode fracture testing of adhesively bonded joints. J. Adhes. Sci. Technol. 23, 515–1530 (2009)Google Scholar
  90. J. Dolbow, N. Moës, T. Belytschko, An extended finite element method for modeling crack growth with frictional contact. Finite Elem. Anal. Des. 36, 235–260 (2000)zbMATHGoogle Scholar
  91. K. Duan, X.Z. Hu, F.H. Wittmann, Explanation of size effect in concrete fracture using non-uniform energy distribution. Mater. Struct. 35, 326–331 (2002)Google Scholar
  92. K. Duan, X.Z. Hu, F.H. Wittmann, Boundary effect on concrete fracture and non-constant fracture energy distribution. Eng. Fract. Mech. 70, 2257–2268 (2003)Google Scholar
  93. K. Duan, X. Hu, Y.W. Mai, Substrate constraint and adhesive thickness effects on fracture toughness of adhesive joints. J. Adhes. Sci. Technol. 18, 39–53 (2004)Google Scholar
  94. P.A. DuBois, Crashworthiness Engineering Course Notes (Livermore Software Technology Corporation, Livermore, 2004)Google Scholar
  95. F. Ducept, P. Davies, D. Gamby, Mixed mode failure criteria for a glass/epoxy composite and an adhesively bonded composite/composite joint. Int. J. Adhes. Adhes. 20, 233–244 (2000)Google Scholar
  96. D.S. Dugdale, Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)Google Scholar
  97. T. Elguedj, A. Gravouil, A. Combescure, Appropriate extended functions for X-FEM simulation of plastic fracture mechanics. Comput. Methods Appl. Mech. Eng. 195, 501–515 (2006)zbMATHGoogle Scholar
  98. Engineering Sciences Data Unit, Inelastic shear stresses and strains in adhesive bonding lap joints loaded in tension or shear (Computer Program). Engineering Sciences Data Item Number 79016 (1979)Google Scholar
  99. M. Fagerström, R. Larsson, Theory and numerics for finite deformation fracture modelling using strong discontinuities. Int. J. Numer. Methods Eng. 66, 911–948 (2006)zbMATHGoogle Scholar
  100. P. Feraren, H.M. Jensen, Cohesive zone modelling of interface fracture near flaws in adhesive joints. Eng. Fract. Mech. 71, 2125–2142 (2004)Google Scholar
  101. G. Fernlund, J.K. Spelt, Failure load prediction. Int. J. Adhes. Adhes. 11, 213–227 (1991)Google Scholar
  102. G. Fernlund, M. Papini, D. McCammond, J.K. Spelt, Fracture load predictions for adhesive joints. Compos. Sci. Technol. 51, 587–600 (1994)Google Scholar
  103. D.B. Flinn, C.S. Lo, W.F. Zok, A.G. Evans, Fracture resistance characteristics of a metal-toughened ceramic. J. Am. Ceram. Soc. 76, 369–375 (1993)Google Scholar
  104. G.E. Forsythe, W.R. Wasow, Finite-Difference Methods for Partial Differential Equations (Wiley, New York, 1960)zbMATHGoogle Scholar
  105. D.M. Gleich, M.J.L. Van Tooren, A. Beukers, Analysis and evaluation of bondline thickness effects on failure load in adhesively bonded structures. J. Adhes. Sci. Technol. 15, 1091–1101 (2001)Google Scholar
  106. M. Goland, E. Reissner, The stresses in cemented joints. J. Appl. Mech. 66, A17–A27 (1944)Google Scholar
  107. J.P.M. Gonçalves, M.F.S.F. de Moura, P.T. de Castro, A.T. Marques, Interface element including point-to-surface constraints for three-dimensional problems with damage propagation. Eng. Comput. 17, 28–47 (2000)zbMATHGoogle Scholar
  108. J.P.M. Gonçalves, M.F.S.F. de Moura, P.M.S.T. de Castro, A three-dimensional finite element model for stress analysis of adhesive joints. Int. J. Adhes. Adhes. 22, 357–365 (2002)Google Scholar
  109. L. Greenwood, The Strength of a Lap Joint, in Aspects of Adhesion-5, ed. by D. Alner (University of London Press, London, 1969)Google Scholar
  110. H.L. Groth, Stress singularities and fracture at interface corners in bonded joints. Int. J. Adhes. Adhes. 8, 107–113 (1988)Google Scholar
  111. A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth. Part I: yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)Google Scholar
  112. L. Hamitouche, M. Tarfaoui, A. Vautrin, An interface debonding law subject to viscous regularization for avoiding instability: application to the delamination problems. Eng. Fract. Mech. 75, 3084–3100 (2008)Google Scholar
  113. L.J. Hart-Smith, Adhesive-bonded single-lap joints. NASA Contract Report, NASA CR-112236 (1973)Google Scholar
  114. S. Hashemi, A.J. Kinloch, J.G. Williams, Corrections needed in double cantilever beam tests for assessing the interlaminar failure of fibre composites. J. Mater. Sci. Lett. 8, 125–129 (1989)Google Scholar
  115. J.L. Högberg, U. Stigh, Specimen proposals for mixed mode testing of adhesive layer. Eng. Fract. Mech. 73, 2541–2556 (2006)Google Scholar
  116. J.L. Högberg, B.F. Sørensen, U. Stigh, Constitutive behaviour of mixed mode loaded adhesive layer. Int. J. Solids Struct. 44, 8335–8354 (2007)zbMATHGoogle Scholar
  117. M. Hojo, T. Ando, M. Tanaka, T. Adachi, S. Ochiai, Y. Endo, Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf. Int. J. Fatigue 28, 1154–1165 (2006)zbMATHGoogle Scholar
  118. Y. Hua, A.D. Crocombe, M.A. Wahab, I.A. Ashcroft, Continuum damage modelling of environmental degradation in joints bonded with EA9321 epoxy adhesive. Int. J. Adhes. Adhes. 28, 302–313 (2008)Google Scholar
  119. D.L. Hunston, A.J. Kinloch, S.J. Shaw, S.S. Wang, Characterization of fracture behavior of adhesive joints, in Characteristics Formation Testing, Adhesive Joints, ed. by K. Mittal (Plenum Press, New York, 1984)Google Scholar
  120. D.L. Hunston, A.J. Kinloch, S.S. Wang, Micromechanics of fracture in structural adhesive bonds. J. Adhes. 28, 103–114 (1989)Google Scholar
  121. J.W. Hutchinson, Singular behavior at the end of a tensile crack in a hardening material. J. Mech. Phys. Solids 16, 13–31 (1968)zbMATHGoogle Scholar
  122. T. Ikeda, A. Yamashita, N. Miyazaki, Elastic-plastic analysis of crack in adhesive joint by combination of boundary element and finite element methods. Comput. Mech. 21, 533–539 (1998)zbMATHGoogle Scholar
  123. T. Ikeda, A. Yamashita, D. Lee, N. Miyazaki, Failure of a ductile adhesive layer constrained by hard adherends. J. Eng. Mater. Technol. 122, 80–85 (2000)Google Scholar
  124. K. Ikegami, T. Takeshita, K. Matsuo, T. Sugibayashi, Strength of adhesively bonded scarf joints between glass fibre-reinforced plastics and metal. Int. J. Adhes. Adhes. 10, 199–206 (1990)Google Scholar
  125. M. Imanaka, T. Hamano, A. Morimoto, R. Ashino, M. Kimoto, Fatigue damage evaluation of adhesively bonded butt joints with a rubber-modified epoxy adhesive. J. Adhes. Sci. Technol. 17, 981–994 (2003)Google Scholar
  126. G. Ji, Z. Ouyang, G. Li, S. Ibekwe, S.S. Pang, Effects of adhesive thickness on global and local Mode-I interfacial fracture of bonded joints. Int. J. Solids Struct. 47, 2445–2458 (2010)zbMATHGoogle Scholar
  127. J. Jing, F. Gao, J. Johnson, F.Z. Liang, R.L. Williams, J. Qu, Simulation of dynamic fracture along solder-pad interfaces using a cohesive zone model. Eng. Failure Anal. 16, 1579–1586 (2009)Google Scholar
  128. S.J. John, A.J. Kinloch, F.L. Matthews, Measuring and predicting the durability of bonded fibre/epoxy composite joints. Composites 22, 121–127 (1991)Google Scholar
  129. A. Karac, B.R.K. Blackman, V. Cooper, A.J. Kinloch, S.R. Sanchez, W.S. Teo, A. Ivankovic, Modelling the fracture behavior of adhesively-bonded joints as a function of test rate. Eng. Fract. Mech. 78, 973–989 (2011)Google Scholar
  130. M.S. Kafkalidis, M.D. Thouless, The effects of geometry and material properties on the fracture of single lap-shear joints. Int. J. Solids Struct. 39, 4367–4383 (2002)zbMATHGoogle Scholar
  131. P.I. Kattan, G.Z. Voyiadjis, Damage Mechanics with Finite Elements (Springer, Heidelberg, 2005)Google Scholar
  132. A.R. Khoei, M. Nikbakht, Contact friction modeling with the extended finite element method (X-FEM). J. Mater. Process. Technol. 177, 58–62 (2006)Google Scholar
  133. H. Khoramishad, A.D. Crocombe, K.B. Katnam, I.A. Ashcroft, Predicting fatigue damage in adhesively bonded joints using a cohesive zone model. Int. J. Fatigue 32, 1146–1158 (2010)Google Scholar
  134. H. Kim, K.T. Kedward, Stress analysis of adhesively-bonded joints under in-plane shear loading. J. Adhesion 76, 1–36 (2001)Google Scholar
  135. A.J. Kinloch, Adhesion and Adhesives: Science and Technology (Chapman & Hall, London, 1987)Google Scholar
  136. A.J. Kinloch, S.J. Shaw, The fracture resistance of a toughened epoxy adhesive. J. Adhesion 12, 59–77 (1981)Google Scholar
  137. A.J. Kinloch, J.G. Williams, Crack blunting mechanisms in polymers. J. Mater. Sci. 15, 987–996 (1980)Google Scholar
  138. A.J. Kinloch, R.J. Young, Fracture Behaviour of Polymers (Applied Science Publishers, London, 1983)Google Scholar
  139. L. Lammerant, I. Verpoest, Modelling of the interaction between matrix cracks and delaminations during impact of composite plates. Compos. Sci. Technol. 56, 1171–1178 (1996)Google Scholar
  140. S.S. Lee, Boundary element analysis of the stress singularity at the interface corner of viscoelastic adhesive layers. Int. J. Solids Struct. 35, 1385–1394 (1998)zbMATHGoogle Scholar
  141. S.J. Lee, D.G. Lee, Development of a failure model for the adhesively bonded tubular single lap joint. J. Adhes. 40, 1–14 (1992)Google Scholar
  142. D.B. Lee, T. Ikeda, N. Miyazaki, N.S. Choi, Fracture behavior around a crack tip in rubber-modified epoxy adhesive joint with various bond thicknesses. J. Mater. Sci. Lett. 22, 229–233 (2003)Google Scholar
  143. D.B. Lee, T. Ikeda, N. Miyazaki, N.S. Choi, Effect of bond thickness on the fracture toughness of adhesive joints. J. Eng. Mater. Technol. 126, 14–18 (2004)Google Scholar
  144. M.J. Lee, T.M. Cho, W.S. Kim, B.C. Lee, J.J. Lee, Determination of cohesive parameters for a mixed-mode cohesive zone model. Int. J. Adhes. Adhes. 30, 322–328 (2010)Google Scholar
  145. K. Leffler, K.S. Alfredsson, U. Stigh, Shear behaviour of adhesive layers. Int. J. Solids Struct. 44, 530–545 (2007)zbMATHGoogle Scholar
  146. J. Lemaitre, Local approach of fracture. Eng. Fract. Mech. 25, 523–537 (1986)Google Scholar
  147. J. Lemaitre, J.M. Chaboche, Mechanics of Solid Materials (Cambridge University Press, Cambridge, 1985)Google Scholar
  148. J. Lemaitre, R. Desmorat, Engineering Damage Mechanics (Springer, Heidelberg, 2005)Google Scholar
  149. S. Li, M.D. Thouless, A.M. Waas, J.A. Schroeder, P.D. Zavattieri, Use of Mode-I cohesive-zone models to describe the fracture of an adhesively-bonded polymer–matrix composite. Compos. Sci. Technol. 65, 281–293 (2005a)Google Scholar
  150. S. Li, M.D. Thouless, A.M. Waas, J.A. Schroeder, P.D. Zavattieri, Use of a cohesive-zone model to analyze the fracture of a fiber reinforced polymer–matrix composite. Compos. Sci. Technol. 65, 537–549 (2005b)Google Scholar
  151. C.D.M. Liljedahl, A.D. Crocombe, M.A. Wahab, I.A. Ashcroft, Damage modelling of adhesively bonded joints. Int. J. Fract. 141, 147–161 (2006)Google Scholar
  152. X. Liu, G. Wang, Progressive failure analysis of bonded composite repairs. Compos. Struct. 81, 331–340 (2007)Google Scholar
  153. H. Liu, X.L. Zhao, R. Al-Mahaidi, Boundary element analysis of CFRP reinforced steel plates. Compos. Struct. 91, 74–83 (2009)Google Scholar
  154. A.G. Magalhães, M.F.S.F. de Moura, J.P.M. Gonçalves, Evaluation of stress concentration effects in single-lap bonded joints of laminate composite materials. Int. J. Adhes. Adhes. 25, 313–319 (2005)Google Scholar
  155. S. Maiti, P.H. Geubelle, A cohesive model for fatigue failure of polymers. Eng. Fract. Mech. 72, 691–708 (2005)Google Scholar
  156. A.V. Mello, K.M. Liechti, The effect of self-assembled monolayers on interfacial fracture. J. Appl. Mech. 73, 860–870 (2006)zbMATHGoogle Scholar
  157. Y. Mi, M.A. Crisfield, G.A.O. Davies, H.B. Hellweg, Progressive delamination using interface elements. J. Compos. Mater. 32, 1246–1272 (1998)Google Scholar
  158. A.R. Mitchell, D.F. Griffiths, The Finite Difference Method in Partial Differential Equations (Wiley, New York, 1980)zbMATHGoogle Scholar
  159. N. Moës, T. Belytschko, Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69, 813–833 (2002)Google Scholar
  160. N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Eng. 46, 131–150 (1999)zbMATHGoogle Scholar
  161. S. Mohammadi, Extended Finite Element Method for Fracture Analysis of Structures (Blackwell Publishing, New Jersey, 2008)zbMATHGoogle Scholar
  162. F. Moroni, A. Pirondi, A procedure for the simulation of fatigue crack growth in adhesively bonded joints based on the cohesive zone model and different mixed-mode propagation criteria. Eng. Fract. Mech. 78, 1808–1816 (2011)Google Scholar
  163. F. Mortensen, O.T. Thomsen, Analysis of adhesive bonded joints: a unified approach. Compos. Sci. Technol. 62, 1011–1031 (2002)Google Scholar
  164. J.J. Munoz, U. Galvanetto, P. Robinson, On the numerical simulation of fatigue driven delamination with interface elements. Int. J. Fatigue 28, 1136–1146 (2006)zbMATHGoogle Scholar
  165. J.A. Nairn, Energy release rate analysis for adhesive and laminate double cantilever beam specimens emphasizing the effect of residual stresses. Int. J. Adhes. Adhes. 20, 59–70 (2000)Google Scholar
  166. E.P. O’Brien, T.C. Ward, S. Guo, D.A. Dillard, Strain energy release rates of a pressure sensitive adhesive measured by the shaft-loaded blister test. J. Adhes. 79, 69–97 (2003)Google Scholar
  167. A. Öchsner, Special Numerical Techniques, in Handbook of Adhesion Technology, ed. by L.M.F. da Silva, A. Öchsner, R.D. Adams (Springer, Heidelberg, 2011)Google Scholar
  168. K.C. Pandya, J.G. Williams, Measurement of cohesive zone parameters in tough polyethylene. Polymer Eng. Sci. 40, 1765–1776 (2000)Google Scholar
  169. S.K. Panigrahi, B. Pradhan, Three dimensional failure analysis and damage propagation behavior of adhesively bonded single lap joints in laminated FRP composites. J. Reinf. Plast. Compos. 26, 183–201 (2007)Google Scholar
  170. T. Pardoen, T. Ferracin, C.M. Landis, F. Delannay, Constraint effects in adhesive joint fracture. J. Mech. Phys. Solids 53, 1951–1983 (2005)zbMATHGoogle Scholar
  171. A.B. Pereira, A.B. de Morais, Strength of adhesively bonded stainless steel joints. Int. J. Adhes. Adhes. 23, 315–322 (2003)Google Scholar
  172. Z. Petrossian, M.R. Wisnom, Prediction of delamination initiation and growth from discontinuous plies using interface elements. Compos. Part A 29, 503–515 (1998)Google Scholar
  173. A.M.G. Pinto, A.G. Magalhães, R.D.S.G. Campilho, M.F.S.F. de Moura, A.P.M. Baptista, Single-lap joints of similar and dissimilar adherends bonded with an acrylic adhesive. J. Adhes. 85, 351–376 (2009)Google Scholar
  174. V.P. Premchand, K.S. Sajikumar, Fracture analysis in adhesive bonded joints with centre crack. NCTT09 10th national conference on technological trends, Trivandrum, India (2009)Google Scholar
  175. M. Quaresimin, M. Ricotta, Life prediction of bonded joints in composite materials. Int. J. Fatigue 28, 1166–1176 (2006)zbMATHGoogle Scholar
  176. R.S. Raghava, R. Cadell, G.S.Y. Yeh, The macroscopic yield behavior of polymers. J. Mater. Sci. 8, 225–232 (1973)Google Scholar
  177. P.G.S. Raghavan, A continuum damage mechanics model for unidirectional composites undergoing interfacial de-bonding. Mech. Mater. 37, 955–977 (2005)Google Scholar
  178. J.R. Rice, G.F. Rosengren, Plane strain deformation near a crack tip in a powerlaw hardening material. J. Mech. Phys. Solids 16, 1–12 (1968)zbMATHGoogle Scholar
  179. M. Ridha, V.B.C. Tan, T.E. Tay, Traction-separation laws for progressive failure of a bonded scarf repair of composite panel. Compos. Struct. 93, 1239–1245 (2010)Google Scholar
  180. P. Robinson, U. Galvanetto, D. Tumino, G. Bellucci, D. Violeau, Numerical simulation of fatigue-driven delamination using interface elements. Int. J. Numer. Methods Eng. 63, 1824–1848 (2005)zbMATHGoogle Scholar
  181. K.L. Roe, T. Siegmund, An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng. Fract. Mech. 70, 209–232 (2003)Google Scholar
  182. M. Sabsabi, E. Giner, F.J. Fuenmayor, Experimental fatigue testing of a fretting complete contact and numerical life correlation using X-FEM. Int. J. Fatigue 33, 811–822 (2011)Google Scholar
  183. N.K. Salgado, M.H. Aliabad, The boundary element analysis of cracked stiffened sheets, renforced by adhesively bonded patches. Int. J. Numer. Meth. Eng. 42, 195–217 (1998)zbMATHGoogle Scholar
  184. E.M. Sampaio, F.L. Bastian, H.S.C. Mattos, A simple continuum damage model for adhesively bonded butt joints. Mech. Res. Commun. 31, 443–449 (2004)zbMATHGoogle Scholar
  185. C. Schuecker, B.D. Davidson, Effect of friction on the perceived mode II delamination toughness from three and four point bend end notched flexure tests. ASTM STP 1383, 334–344 (2000)Google Scholar
  186. K. Shahin, F. Taheri, The strain energy release rates in adhesively bonded balanced and unbalanced specimens and lap joints. Int. J. Solids Struct. 45, 6284–6300 (2008)zbMATHGoogle Scholar
  187. V. Shenoy, I.A. Ashcroft, G.W. Critchlow, A.D. Crocombe, M.M. Abdel Wahab, An investigation into crack initiation and propagation behaviour of bonded single-lap joints using backface strain. Int. J. Adhes. Adhes. 29, 361–371 (2009)Google Scholar
  188. V. Shenoy, I.A. Ashcroft, G.W. Critchlow, A.D. Crocombe, Unified methodology for the prediction of the fatigue behavior of adhesively bonded joints. Int. J. Fatigue 32, 1278–1288 (2010a)Google Scholar
  189. V. Shenoy, I.A. Ashcroft, G.W. Critchlow, A.D. Crocombe, Fracture mechanics and damage mechanics based fatigue lifetime prediction of adhesively bonded joints subjected to variable amplitude fatigue. Eng. Fract. Mech. 77, 1073–1090 (2010b)Google Scholar
  190. A.G. Solana, A.D. Crocombe, I.A. Ashcroft, Fatigue life and backface strain predictions in adhesively bonded joints. Int. J. Adhes. Adhes. 30, 36–42 (2010)Google Scholar
  191. S.H. Song, G.H. Paulino, W.G. Buttlar, A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material. Eng. Fract. Mech. 73, 2829–2848 (2006)Google Scholar
  192. B.F. Sørensen, Cohesive law and notch sensitivity of adhesive joints. Acta Mater. 50, 1053–1061 (2002)Google Scholar
  193. B.F. Sørensen, T.K. Jacobsen, Determination of cohesive laws by the J integral approach. Eng. Fract. Mech. 70, 1841–1858 (2003)Google Scholar
  194. S. Srinivas (1975) Analysis of bonded joints. NASA Technical Note, NASA TN D-7855Google Scholar
  195. N. Sukumar, J.H. Prevost, Modeling quasi-static crack growth with the extended finite element method part i: computer implementation. Int. J. Solids Struct. 40, 7513–7537 (2003)zbMATHGoogle Scholar
  196. N. Sukumar, N. Moës, B. Moran, T. Belytschko, Extended finite element method for three-dimensional crack modeling. Int. J. Numer. Meth. Eng. 48, 1549–1570 (2000)zbMATHGoogle Scholar
  197. V. Tamuzs, S. Tarasovs, U. Vilks, Delamination properties of translaminar-reinforced composites. Compos. Sci. Technol. 63, 1423–1431 (2003)Google Scholar
  198. D. Tumino, F. Cappello, Simulation of fatigue delamination growth in composites with different mode mixtures. J. Compos. Mater. 41, 2415–2441 (2007)Google Scholar
  199. M.J. Turner, R.W. Clough, H.C. Martin, J.L. Topp, Stiffness and deflection analysis of complex structures. J. Aerosp. Sci. 23, 805–823 (1956)zbMATHGoogle Scholar
  200. A. Turon, J. Costa, P.P. Camanho, C.G. Dàvila, Simulation of delamination in composites under high-cycle fatigue. Compos. Part A 38, 2270–2282 (2007a)Google Scholar
  201. A. Turon, C.G. Dávila, P.P. Camanho, J. Costa, An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74, 1665–1682 (2007b)Google Scholar
  202. V. Tvergaard, J.W. Hutchinson, The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J. Mech. Phys. Solids 40, 1377–1397 (1992)zbMATHGoogle Scholar
  203. V. Tvergaard, J.W. Hutchinson, The influence of plasticity on the mixed-mode interface toughness. J. Mech. Phys. Solids 41, 1119–1135 (1993)zbMATHGoogle Scholar
  204. V.I. Tvergaard, A. Needleman, Analysis of cup one fracture in round tensile bar. Acta Metall. 32, 157–169 (1984)Google Scholar
  205. M. Vable, Stress analysis of bonded joints by boundary element method, in Modeling of Adhesively Bonded Joints, ed. by L.F.M. da Silva, A. Öchsner (Springer, Heidelberg, 2008)Google Scholar
  206. M. Vable, J.R. Maddi, Boundary element analysis of adhesively bonded joints. Int. J. Adhes. Adhes. 26, 133–144 (2006)Google Scholar
  207. O. Volkersen, Die nietkraftoerteilung in zubeanspruchten nietverbindungen mit konstanten loschonquerschnitten. Luftfahrtforschung 15, 41–47 (1938)Google Scholar
  208. G.Z. Voyiadjis, P.I. Kattan, Damage Mechanics (Marcell Dekker, New York, 2005)zbMATHGoogle Scholar
  209. M.M.A. Wahab, I.A. Ashcroft, A.D. Crocombe, S.J. Shaw, Prediction of fatigue thresholds in adhesively bonded joints using damage mechanics and fracture mechanics. J. Adhes. Sci. Technol. 15, 763–781 (2001)Google Scholar
  210. M.M.A. Wahab, I.A. Ashcroft, A.D. Crocombe, P.A. Smith, Numerical prediction of fatigue crack propagation lifetime in adhesively bonded structures. Int. J. Fatigue 24, 705–709 (2002)zbMATHGoogle Scholar
  211. R.X. Wang, J. Cui, A.N. Sinclair, J.K. Spelt, Strength of adhesive joints with adherend yielding: I. Analytical model. J. Adhes. 79, 23–48 (2003)Google Scholar
  212. Y. Wei, J.W. Hutchinson, Nonlinear delamination mechanics for thin films. J. Mech. Phys. Solids 45, 1137–1159 (1997)MathSciNetGoogle Scholar
  213. Y. Wei, J.W. Hutchinson, Interface strength, work of adhesion and plasticity in the peel test. Int. J. Fract. 93, 315–333 (1999)Google Scholar
  214. P.H. Wen, M.H. Aliabadi, A. Young, Boundary element analysis of flat cracked panels with adhesively bonded patches. Eng. Fract. Mech. 69, 2129–2146 (2002)Google Scholar
  215. P.H. Wen, M.H. Aliabadi, A. Young, Boundary element analysis of curved cracked panels with adhesively bonded patches. Int. J. Numer. Methods Eng. 58, 43–61 (2003)zbMATHGoogle Scholar
  216. M.L. Williams, The stresses around a fault or crack in dissimilar media. Bull. Seism. Soc. Am. 49, 199–204 (1959)Google Scholar
  217. D. Xie, A.M. Waas, Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Eng. Fract. Mech. 73, 1783–1796 (2006)Google Scholar
  218. D. Xie, A.G. Salvi, C. Sun, A.M. Waas, A. Caliskan, Discrete cohesive zone model to simulate static fracture in 2D triaxially braided carbon fiber composites. J. Compos. Mater. 40, 2025–2046 (2006)Google Scholar
  219. W. Xu, G. Li, Finite difference three-dimensional solution of stresses in adhesively bonded composite tubular joint subjected to torsion. Int. J. Adhes. Adhes. 30, 191–199 (2010)Google Scholar
  220. Y. Xu, H. Yuan, Computational analysis of mixed-mode fatigue crack growth in quasi-brittle materials using extended finite element methods. Eng. Fract. Mech. 76, 165–181 (2009)Google Scholar
  221. J.Q. Xu, Y.H. Liu, X.G. Wang, Numerical methods for the determination of multiple stress singularities and related stress intensity coefficients. Eng. Fract. Mech. 63, 775–790 (1999)Google Scholar
  222. C. Yan, Y.W. Mai, L. Ye, Effect of bond thickness on fracture behaviour in adhesive joints. J. Adhes. 75, 27–44 (2001a)Google Scholar
  223. C. Yan, Y.W. Mai, Q. Yuan, L. Ye, J. Sun, Effects of substrate materials on fracture toughness measurement in adhesive joints. Int. J. Mech. Sci. 43, 2091–2102 (2001b)zbMATHGoogle Scholar
  224. Q.D. Yang, M.D. Thouless, Mixed-mode fracture analyses of plastically deforming adhesive joints. Int. J. Fract. 110, 175–187 (2001)Google Scholar
  225. Q.D. Yang, M.D. Thouless, S.M. Ward, Numerical simulations of adhesively-bonded beams failing with extensive plastic deformation. J. Mech. Phys. Solids 47, 1337–1353 (1999)zbMATHGoogle Scholar
  226. Q.D. Yang, M.D. Thouless, S.M. Ward, Analysis of the symmetrical 90º peel test with extensive plastic deformation. J. Adhes. 72, 115–132 (2000)Google Scholar
  227. Q.D. Yang, M.D. Thouless, S.M. Ward, Elastic-plastic mode-II fracture of adhesive joints. Int. J. Solids Struct. 38, 3251–3262 (2001)zbMATHGoogle Scholar
  228. H. Yoshihara, Simple estimation of critical stress intensity factors of wood by tests with double cantilever beam and three-point end-notched flexure. Holzforschung 61, 182–189 (2007)MathSciNetGoogle Scholar
  229. A. Young, D.J. Cartwright, D.P. Rooke, Boundary element method for analysing repair patches on cracked finite sheets. Aeronaut. J. 92, 416–421 (1988)Google Scholar
  230. A. Young, D.P. Rooke, D.J. Cartwright, Analysis of patched and stiffened cracked panels using the boundary element method. Int. J. Solids Struct. 29, 2201–2216 (1992)zbMATHGoogle Scholar
  231. X. Zhao, R.D. Adams, L.F.M. da Silva, Single lap joints with rounded adherend corners: Stress and strain analysis. J. Adhes. Sci. Technol. 25, 819–836 (2011a)Google Scholar
  232. X. Zhao, R.D. Adams, L.F.M. da Silva, Single lap joints with rounded adherend corners: experimental results and strength prediction. J. Adhes. Sci. Technol. 25, 837–856 (2011b)Google Scholar
  233. Y. Zhu, K.M. Liechti, K. Ravi-Chandar, Direct extraction of rate-dependent traction-separation laws for polyurea/steel interfaces. Int. J. Solids Struct. 46, 31–51 (2009)Google Scholar
  234. O.C. Zienkiewicz, Y.K. Cheung, The Finite Element Method in Structural and Continuum Mechanics (McGraw-Hill, London, 1967)zbMATHGoogle Scholar
  235. O.C. Zienkiewicz, R. Taylor, The Finite Element Method: Vol 2, Solid Mechanics, 5th edn. (Butterworth-Heinemann, Oxford, 2001)Google Scholar
  236. G.P. Zou, K. Shalin, F. Taheri, An analytical solution for the analysis of symmetric composite adhesively bonded joints. Compos. Struct. 65, 499–510 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  • Lucas F. M. da Silva
    • 1
    Email author
  • Raul D. S. G. Campilho
    • 2
  1. 1.Departamento de Engenharia Mecânica, Faculdade de Engenharia daUniversidade do PortoPortoPortugal
  2. 2.Departamento de Engenharia MecânicaInstituto Superior de Engenharia do PortoPortoPortugal

Personalised recommendations