Group Polarization and Non-positive Social Influence: A Revised Voter Model Study

  • Zhenpeng Li
  • Xijin Tang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6889)

Abstract

In this paper, we analyze how the non-positive social influence affects group polarization by adding influence factor into the classic voter model. Through model simulation, we observe that a group would self-organize into two-polarization pattern, under no imposing intervention, which is entirely different from the result of drift to an extreme polarization dominant state in the classic voter model.

Keywords

group polarization non-positive social influence social identity voter model opinions dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MacKay, C.: Extraordinary popular delusions and the madness of crowds. Harmony Books, New York (1980) (1841, reprint 1980)Google Scholar
  2. 2.
    Le Bon, G.: The crowd: A study of popular mind, Larlin, Marietta, GA (1896)Google Scholar
  3. 3.
    Simon, H.A.: Bandwagon and underdog effects and the possibility of election predictions. Public Opinion Quarterly 18, 245–253 (1954)CrossRefGoogle Scholar
  4. 4.
    Latané, B.: The psychology of social impact. American Psychologist 36, 343–365 (1981)CrossRefGoogle Scholar
  5. 5.
    Friedkin, N.: A structural theory of social influence. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  6. 6.
    Blume, L., Durlauf, S.: The economy as an evolving complex system III. Oxford University Press, Oxford (2004)Google Scholar
  7. 7.
    Stauffer, D.: Sociophysics simulations II: opinion dynarnics. In: AlP Conference Proceedings, Granada, Spain, vol. 779, pp. 56–68 (2005)Google Scholar
  8. 8.
    Hummel, R., Member Manevitz, L.A.: Statistical approach to the representation of uncertainty in beliefs using spread of opinions. IEEE Tranactions on System, Man, Cybernetics-Part A: System and Human 26(3), 378–384 (1996)CrossRefGoogle Scholar
  9. 9.
    Segaran, T.: Programming Collective Intelligence: Building Smart Web 2.0 Applications. O’Reilly Media, Sebastopol (2007)Google Scholar
  10. 10.
    Asch, S.E.: Effects of group pressure upon the modification and distortion of judgement. In: Guetzkow, H. (ed.) Groups, Leadership and Men. Carnegie Press, Pittsburgh (1951)Google Scholar
  11. 11.
    Kelman, H.: Compliance, identification, and internalization: Three processes of attitude change. Journal of Conflict Resolution 1, 51–60 (1958)CrossRefGoogle Scholar
  12. 12.
    Axelrod, R.: The dissemination of culture: A model with local convergence and global polarization. Journal of Conflict Resolution 41(2), 203–226 (1997)CrossRefGoogle Scholar
  13. 13.
    Clifford, P., Sudbury, A.: A model for spatial conflict. Biometrika 60(3), 581–588 (1973)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Holley, R., Liggett, T.: Ergodic theorems for weakly interacting infinite systems and the voter model. The Annals of Probability 3(4), 643–663 (1975)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Castellano, C., Vilone, D., Vespignani, A.: Incomplete Ordering of the voter model on Small-World Networks. Euro. Physics Letters 63(1), 153–158 (2003)CrossRefGoogle Scholar
  16. 16.
    Tajfel, H.: Social identity and intergroup relations. Cambridge University Press, Cambridge (1982)Google Scholar
  17. 17.
    Prentice-Dunn, S., Rogers, R.W.: Deindividuation in aggression. In: Green, R.G., Donnerstein, E. (eds.) Aggression: Theoretical and Empirical Reviews, vol. 2(issues in Research), pp. 155–177. Academic Press, New York (1983)Google Scholar
  18. 18.
    Raafat, R.M., Chater, N., Frith, C.: Herding in humans. Trends in Cognitive Sciences (2009)Google Scholar
  19. 19.
    Bikhchandani, S., David, H., Welch, I.: A Theory of Fads, Fashion, Custom, and Cultural Change as Informational Cascades. Journal of Political Economy 100(5), 992–1026 (1992)CrossRefGoogle Scholar
  20. 20.
    Suchecki, K., Eguiluz, V., Miguel, M.: Voter model dynamics in complex networks: role of dimensionality, disorder, and degree distribution. Physical Review E 72, 036132 (2005b)CrossRefGoogle Scholar
  21. 21.
    Barabsi, A.L., Albert, R.: Emergence of scaling in random networks. Science, 286–509 (1999)Google Scholar
  22. 22.
    Cartwright, D., Harary, F.: Structural balance: A generalization of Heider’s theory. Psy. Rev. 62, 277–293 (1966)Google Scholar
  23. 23.
    Macy, M.W., Kitts, J., Flache, A., Benard, S.: Polarization in Dynamic Networks: A Hopfield Model of Emergent Structure. In: Dynamic Social Network Modeling and Analysis. National Academy Press, Washington, DC (2003)Google Scholar
  24. 24.
    French Jr., J.R.P.: A Formal Theory of Social Power. The Psychological Review 63, 181–194 (1956)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Zhenpeng Li
    • 1
  • Xijin Tang
    • 1
  1. 1.Institute of Systems Science, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingP.R. China

Personalised recommendations