In this paper, we propose a stream pattern matching method that realizes a standard mechanism which combines different methods with complementary advantages. We define a specification of the stream pattern description, and parse it to the tree representation. Finally, the tree representation is transformed into the S-CG-NFA for recognition. This method provides a high level of recognition efficiency and accuracy.


Traffic Recognition Stream Pattern Glushkov NFA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Kang, H.-J., Kim, M.-S., Hong, J.W.-K.: A method on multimedia service traffic monitoring and analysis. In: Brunner, M., Keller, A. (eds.) DSOM 2003. LNCS, vol. 2867, pp. 93–105. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Levandoski, J., Sommer, E., Strait, M.: Application Layer Packet Classifier for Linux[CP/OL] (2006),
  4. 4.
    Zuev, D., Moore, A.W.: Traffic classification using a statistical approach. In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 321–324. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Moore A.W., Zuev D., Crogan M.: Discriminators for use in flow based classification. Department of Computer Science, Queen Mary, University of London (2005)Google Scholar
  6. 6.
    Berry, G., Sethi, R.: From regular expression to deterministic automata. Theoretical Computer Science 48(1), 117–126 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chang, C.H., Paige, R.: From regular expression to DFA’s using NFA’s. In: Proceedings of the 3rd Annual Symposium on Combinatorial Pattern Matching. LNCS, vol. 664, pp. 90–110. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  8. 8.
    Kilpeläinen, P., Tuhkanen, R.: Regular Expressions with Numerical Occurrence Indicators-preliminary results. In: Proceedings of the Eighth Symposium on Programming Languages and Software Tools, SPLST 2003, Kuopio, Finland, pp. 163–173 (2003)Google Scholar
  9. 9.
    Kilpeläinen, P., Tuhkanen, R.: One-unambiguity of regular expressions with numeric occurrence indicators. Inf. Comput 205(6), 890–916 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Becchi, M., Crowley, P.: Extending Finite Automata to Efficiently Match Perl-Compatible Regular Expressions. In: Proceedings of the 2008 ACM Conference on Emerging Network Experiment and Technology, CoNEXT 2008, Madrid, Spain, vol. 25 (2008)Google Scholar
  11. 11.
    Becchi, M., Crowley, P.: A Hybrid Finite Automaton for Practical Deep Packet Inspection. In: ACM CoNEXT 2007, New York, NY, USA, pp. 1–12 (2007)Google Scholar
  12. 12.
    Yun, S., Lee, K.: Regular Expression Pattern Matching Supporting Constrained Repetitions. In: Proceedings of Reconfigurable Computing: Architectures, Tools and Applications, 5th International Workshop, Karlsruhe, Germany, pp. 300–305 (2009)Google Scholar
  13. 13.
    Gelade, W., Gyssens, M., Martens, W.: Regular Expressions with Counting: Weak versus Strong Determinism. In: Proceedings of Mathematical Foundations of Computer Science 2009, 34th International Symposium, Novy Smokovec, High Tatras, Slovakia, pp. 369–381 (2009)Google Scholar
  14. 14.
  15. 15.

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2011

Authors and Affiliations

  • Can Mo
    • 1
  • Hui Li
    • 1
  • Hui Zhu
    • 1
  1. 1.Lab of Computer Networks and Information SecurityXidian UniversityShaanxiP.R. China

Personalised recommendations