Instant Feedback on Discovered Association Rules with PMML-Based Query-by-Example

  • Tomáš Kliegr
  • Andrej Hazucha
  • Tomáš Marek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6902)

Abstract

The long-pending research challenge of the association rule mining task is to identify, out of the multitude of discovered rules, the ones that are interesting for the domain expert. We will demonstrate a new feature of the SEWEBAR-CMS system that allows using any of the rules as a query-by-example, and in one click, discover whether this rule is in some interesting relation to a rule already stored in a knowledge base. New relations can be plugged in using a PMML-like XML-based declarative language through XSLT transformations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beranek, L., Hazucha, A., Marek, T., Kliegr, T.: Searching Association Rules - fulltext, structured or semantic search? In: Proceedings of Znalosti, VŠB-TU, Ostrava (In Czech) (2011) Google Scholar
  2. 2.
    Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.: CRISP-DM 1.0 Step-by-step Data Mining Guide (June 2000) (January 1, 2006)Google Scholar
  3. 3.
    De Bie, T., Kontonasios, K.-N., Spyropoulou, E.: A framework for mining interesting pattern sets. In: Proceedings of the ACM SIGKDD Workshop on Useful Patterns, UP 2010, pp. 27–35. ACM, New York (2010)CrossRefGoogle Scholar
  4. 4.
    Hájek, P., Holena, M., Rauch, J.: The GUHA method and its meaning for data mining. Journal of Computer and System Sciences 76(1), 34–48 (2010); Special Issue on Intelligent Data AnalysisCrossRefMATHGoogle Scholar
  5. 5.
    Hazucha, A., Balhar, J., Kliegr, T.: A PHP library for Ontopia-CMS integration. In: Proceedings of TMRA 2010. University of Leipzig (2010)Google Scholar
  6. 6.
    Kliegr, T., Ovečka, M., Zemánek, J.: Topic maps for association rule mining. In: Proceedings of TMRA 2009. University of Leipzig (2009)Google Scholar
  7. 7.
    Kliegr, T., Svátek, V., Šimůnek, M., Ralbovský, M.: Semantic analytical reports: A framework for post-processing of data mining results. Journal of Intelligent Information SystemsGoogle Scholar
  8. 8.
    Olaru, A., Marinica, C., Guillet, F.: Local mining of association rules with rule schemas. In: CIDM, pp. 118–124. IEEE, Los Alamitos (2009) Google Scholar
  9. 9.
    Rauch, J.: Considerations on logical calculi for dealing with knowledge in data mining. In: Ras, Z.W., Dardzinska, A. (eds.) Advances in Data Management. SCI, vol. 223, pp. 177–199. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Rauch, J., Šimůnek, M.: An alternative approach to mining association rules. Foundation of Data Mining and Knowledge Discovery 6, 211–231 (2005)Google Scholar
  11. 11.
    Tuzhilin, A.: On subjective measures of interestingness in knowledge discovery. In: Proceedings of the First International Conference on Knowledge Discovery and Data Mining, pp. 275–281. AAAI Press, Menlo Park (1995)Google Scholar
  12. 12.
    Zhang, Y., Zhang, L., Nie, G., Shi, Y.: A survey of interestingness measures for association rules. International Conference on Business Intelligence and Financial Engineering, pp. 460–463 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tomáš Kliegr
    • 1
  • Andrej Hazucha
    • 1
  • Tomáš Marek
    • 1
  1. 1.Department of Information and Knowledge EngineeringUniversity of Economics, PraguePrague 3Czech Republic

Personalised recommendations