On Two-Generated Non-commutative Algebras Subject to the Affine Relation

  • Viktor Levandovskyy
  • Christoph Koutschan
  • Oleksandr Motsak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6885)

Abstract

We consider algebras over a field \({\mathbb K}\), generated by two variables x and y subject to the single relation yx = qxy + αx + βy + γ for \(q\in{\mathbb K}^*\) and \(\alpha, \beta, \gamma \in {\mathbb K}\). We prove, that among such algebras there are precisely five isomorphism classes. The representatives of these classes, which are ubiquitous operator algebras, are called model algebras. We derive explicit multiplication formulas for ym ·xn in terms of standard monomials xiyj for many algebras of the considered type. Such formulas are used in e. g. establishing formulas of binomial type and in an implementation of non-commutative multiplication in a computer algebra system. By using the formulas we also study centers and ring-theoretic properties of the non-commutative model algebras.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bueso, J., Gómez-Torrecillas, J., Verschoren, A.: Algorithmic methods in non-commutative algebra. Applications to quantum groups. Kluwer Acad. Publ., Dordrecht (2003)CrossRefMATHGoogle Scholar
  2. 2.
    Chyzak, F., Salvy, B.: Non–commutative elimination in Ore algebras proves multivariate identities. J. Symbolic Computation 26(2), 187–227 (1998)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Dixmier, J.: Enveloping Algebras. AMS, Providence (1996)Google Scholar
  4. 4.
    Koutschan, C.: HolonomicFunctions (User’s Guide). Technical Report 10-01, RISC Report Series, University of Linz, Austria (2010)Google Scholar
  5. 5.
    Levandovskyy, V., Schönemann, H.: Plural — a computer algebra system for noncommutative polynomial algebras. In: Proc. ISSAC, pp. 176–183. ACM Press, New York (2003)Google Scholar
  6. 6.
    McConnell, J., Robson, J.: Noncommutative Noetherian rings. AMS, Providence (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Viktor Levandovskyy
    • 1
  • Christoph Koutschan
    • 2
  • Oleksandr Motsak
    • 3
  1. 1.Lehrstuhl D für MathematikRWTH AachenGermany
  2. 2.RISCJohannes Kepler UniversityLinzAustria
  3. 3.TU KaiserslauternGermany

Personalised recommendations