Advertisement

On Two-Generated Non-commutative Algebras Subject to the Affine Relation

  • Viktor Levandovskyy
  • Christoph Koutschan
  • Oleksandr Motsak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6885)

Abstract

We consider algebras over a field \({\mathbb K}\), generated by two variables x and y subject to the single relation yx = q xy + αx + βy + γ for \(q\in{\mathbb K}^*\) and \(\alpha, \beta, \gamma \in {\mathbb K}\). We prove, that among such algebras there are precisely five isomorphism classes. The representatives of these classes, which are ubiquitous operator algebras, are called model algebras. We derive explicit multiplication formulas for y m ·x n in terms of standard monomials x i y j for many algebras of the considered type. Such formulas are used in e. g. establishing formulas of binomial type and in an implementation of non-commutative multiplication in a computer algebra system. By using the formulas we also study centers and ring-theoretic properties of the non-commutative model algebras.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bueso, J., Gómez-Torrecillas, J., Verschoren, A.: Algorithmic methods in non-commutative algebra. Applications to quantum groups. Kluwer Acad. Publ., Dordrecht (2003)CrossRefMATHGoogle Scholar
  2. 2.
    Chyzak, F., Salvy, B.: Non–commutative elimination in Ore algebras proves multivariate identities. J. Symbolic Computation 26(2), 187–227 (1998)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Dixmier, J.: Enveloping Algebras. AMS, Providence (1996)Google Scholar
  4. 4.
    Koutschan, C.: HolonomicFunctions (User’s Guide). Technical Report 10-01, RISC Report Series, University of Linz, Austria (2010)Google Scholar
  5. 5.
    Levandovskyy, V., Schönemann, H.: Plural — a computer algebra system for noncommutative polynomial algebras. In: Proc. ISSAC, pp. 176–183. ACM Press, New York (2003)Google Scholar
  6. 6.
    McConnell, J., Robson, J.: Noncommutative Noetherian rings. AMS, Providence (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Viktor Levandovskyy
    • 1
  • Christoph Koutschan
    • 2
  • Oleksandr Motsak
    • 3
  1. 1.Lehrstuhl D für MathematikRWTH AachenGermany
  2. 2.RISCJohannes Kepler UniversityLinzAustria
  3. 3.TU KaiserslauternGermany

Personalised recommendations