Regular and Singular Boundary Problems in Maple

  • Anja Korporal
  • Georg Regensburger
  • Markus Rosenkranz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6885)

Abstract

We describe a new maple package for treating boundary problems for linear ordinary differential equations, allowing two-/multi-point as well as Stieltjes boundary conditions. For expressing differential operators, boundary conditions, and Green’s operators, we employ the algebra of integro-differential operators. The operations implemented for regular boundary problems include computing Green’s operators as well as composing and factoring boundary problems. Our symbolic approach to singular boundary problems is new; it provides algorithms for computing compatibility conditions and generalized Green’s operators.

Keywords

Linear boundary problem Singular Boundary Problem Generalized Green’s operator Green’s function Integro-Differential Operator Ordinary Differential Equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Korporal, A., Regensburger, G., Rosenkranz, M.: A Maple package for integro-differential operators and boundary problems. ACM Commun. Comput. Algebra 44(3), 120–122 (2010); Also presented as a poster at ISSAC 2010MATHGoogle Scholar
  2. 2.
    Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: A symbolic framework for operations on linear boundary problems. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 269–283. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York (1955)Google Scholar
  4. 4.
    Stakgold, I.: Green’s functions and boundary value problems. John Wiley & Sons, New York (1979)MATHGoogle Scholar
  5. 5.
    Duffy, D.G.: Green’s functions with applications. Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton, FL (2001)Google Scholar
  6. 6.
    Agarwal, R.P., O’Regan, D.: An introduction to ordinary differential equations. Universitext. Springer, New York (2008)Google Scholar
  7. 7.
    Loud, W.S.: Some examples of generalized Green’s functions and generalized Green’s matrices. SIAM Rev. 12, 194–210 (1970)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ben-Israel, A., Greville, T.N.E.: Generalized inverses, 2nd edn. Springer, New York (2003)MATHGoogle Scholar
  9. 9.
    Boichuk, A.A., Samoilenko, A.M.: Generalized inverse operators and Fredholm boundary-value problems. VSP, Utrecht (2004)Google Scholar
  10. 10.
    Nashed, M.Z., Rall, L.B.: Annotated bibliography on generalized inverses and applications. In: Generalized Inverses and Applications, pp. 771–1041. Academic Press, New York (1976)CrossRefGoogle Scholar
  11. 11.
    Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. J. Symbolic Comput. 43(8), 515–544 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: Symbolic analysis for boundary problems: From rewriting to parametrized Gröbner bases. In: Langer, U., Paule, P. (eds.) Numerical and Symbolic Scientific Computing: Progress and Prospects. Springer, Wien (to appear, 2011)Google Scholar
  13. 13.
    Guo, L., Keigher, W.: On differential Rota-Baxter algebras. J. Pure Appl. Algebra 212(3), 522–540 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Brown, R.C., Krall, A.M.: Ordinary differential operators under Stieltjes boundary conditions. Trans. Amer. Math. Soc. 198, 73–92 (1974)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Regensburger, G., Rosenkranz, M., Middeke, J.: A skew polynomial approach to integro-differential operators. In: May, J.P. (ed.) Proceedings of ISSAC 2009, pp. 287–294. ACM, New York (2009)Google Scholar
  16. 16.
    Regensburger, G., Rosenkranz, M.: An algebraic foundation for factoring linear boundary problems. Ann. Mat. Pura Appl. (4) 188(1), 123–151 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kamke, E.: Differentialgleichungen. Lösungsmethoden und Lösungen. Teil I: Gewöhnliche Differentialgleichungen. Akademische Verlagsgesellschaft, Leipzig (1967)Google Scholar
  18. 18.
    Rosenkranz, M.: A new symbolic method for solving linear two-point boundary value problems on the level of operators. J. Symbolic Comput. 39(2), 171–199 (2005)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Djordjević, D.S.: Further results on the reverse order law for generalized inverses. SIAM J. Matrix Anal. Appl. 29(4), 1242–1246 (2007)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Agarwal, R.P.: Boundary value problems for higher order differential equations. World Scientific Publishing Co. Inc., Teaneck (1986)CrossRefMATHGoogle Scholar
  21. 21.
    Krupchyk, K., Tuomela, J.: The Shapiro-Lopatinskij condition for elliptic boundary value problems. LMS Journal of Computation and Mathematics 9, 287–329 (2006)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Anja Korporal
    • 1
  • Georg Regensburger
    • 2
  • Markus Rosenkranz
    • 3
  1. 1.Johann Radon Institute for Computational and Applied MathematicsAustrian Academy of SciencesLinzAustria
  2. 2.INRIA Saclay – Île de France, Project DISCO, L2S, SupélecGif-sur-Yvette CedexFrance
  3. 3.University of KentCanterburyUnited Kingdom

Personalised recommendations