Construction of Explicit Optimal Value Functions by a Symbolic-Numeric Cylindrical Algebraic Decomposition

  • Hidenao Iwane
  • Akifumi Kira
  • Hirokazu Anai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6885)


Recently parametric treatment of constraint solving and optimization problems has received considerable attention in science and engineering. In this paper we show an efficient and systematic algorithm for parametric programming, i.e. computing exact optimal value functions, based on a specialized symbolic-numeric cylindrical algebraic decomposition. We also present some practical application examples from system and control theory.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anai, H.: A symbolic-numeric approach to multi-parametric programming for control design. In: Proc. ICROS-SICE International Conference 2009, pp. 3525–3530 (2009)Google Scholar
  2. 2.
    Anai, H., Hara, S., Kanno, M., Yokoyama, K.: Parametric polynomial spectral factorization using the sum of roots and its application to a control design problem. J. Symb. Comput. 44(7), 703–725 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bellman, R.: Dynamic Programming. Princeton Univ. Press, Princeton (1957)Google Scholar
  4. 4.
    Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bertsekas, D.: Dynamic Programming and Optimal Control, 3rd edn. Athena Scientific, Belmont (2005)zbMATHGoogle Scholar
  6. 6.
    Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Heidelberg (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    Caviness, B., Johnson, J. (eds.): Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and monographs in symbolic computation. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  8. 8.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Becvar, J. (ed.) MFCS 1975. LNCS, vol. 32. Springer, Heidelberg (1975)Google Scholar
  9. 9.
    Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation 12(3), 299–328 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Domingueza, L.F., Narcisoa, D.A., Pistikopoulos, E.N.: Recent advances in multiparametric nonlinear programming. Computers & Chemical Engineering 34(5), 707–716 (2010); (Selected Paper of Symposium ESCAPE 19, June 14-17, 2009, Krakow, Poland) CrossRefGoogle Scholar
  11. 11.
    Dorato, P., Yang, W., Abdallah, C.: Robust multi-objective feedback design by quantifier elimination. J. Symb. Comput. 24(2), 153–159 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dua, P., Kouramas, K., Dua, V., Pistikopoulos, E.: MPC on a chip – recent advances on the application of multi-parametric model-based control. Computers & Chemical Engineering 32(4-5), 754–765 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Fotiou, I.A., Rostalski, P., Parrilo, P.A., Morari, M.: Parametric optimization and optimal control using algebraic geometry methods. International Journal of Control 79(11), 1340–1358 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Academic Press, London (1983)zbMATHGoogle Scholar
  15. 15.
    Hyodo, N., Hong, M., Yanami, H., Hara, S., Anai, H.: Solving and visualizing nonlinear parametric constraints in control based on quantifier elimination. Appl. Algebra Eng. Commun. Comput. 18(6), 497–512 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination. In: Proceedings of the 2009 International Workshop on Symbolic-Numeric Computation, vol. 1, pp. 55–64 (2009)Google Scholar
  17. 17.
    Iwane, H., Yanami, H., Anai, H.: An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for optimization problems. In: Proceedings of the 2011 International Workshop on Symbolic-Numeric Computation (2011)Google Scholar
  18. 18.
    Kanno, M., Yokoyama, K., Anai, H., Hara, S.: Parametric optimization in control using the sum of roots for parametric polynomial spectral factorization. In: Wang, D. (ed.) ISSAC, pp. 211–218. ACM, New York (2007)Google Scholar
  19. 19.
    Pistikopoulos, E., Georgiadis, M., Dua, V. (eds.): Multi-parametric programming: theory, algorithms, and applications, vol. 1. Wiley-VCH, Chichester (2007)Google Scholar
  20. 20.
    Pistikopoulos, E., Georgiadis, M., Dua, V. (eds.): Multi-parametric model-based control: theory and applications, vol. 2. Wiley-VCH, Chichester (2007)Google Scholar
  21. 21.
    Yanami, H., Anai, H.: The Maple package SyNRAC and its application to robust control design. Future Generation Comp. Syst. 23(5), 721–726 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hidenao Iwane
    • 1
  • Akifumi Kira
    • 2
  • Hirokazu Anai
    • 1
    • 2
  1. 1.IT System Laboratories, Fujitsu Laboratories Ltd.KawasakiJapan
  2. 2.Graduate School of MathematicsKyushu UniversityFukuokaJapan

Personalised recommendations