Time Aware Index for Link Prediction in Social Networks

  • Lankeshwara Munasinghe
  • Ryutaro Ichise
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6862)


Link prediction in social networks such as collaboration networks and friendship networks have recently attracted a great deal of attention. There have been numerous attempts to address this problem through diverse approaches. In the present paper, we focus on the temporal behavior of the link strength, particularly the relationship between the time stamps of interactions or links and the temporal behavior of link strength and how link strength affects future link evolution. Most of the previous studies neglected the impact of time stamps of the interactions and of the links on link evolution. The gap between the current time and the time stamps of the interactions or links is also important to link evolution. In the present paper, we introduced a new time aware index, referred to as time score, that captures the important aspects of time stamps of interactions and the temporality of the link strengths. We apply time score to two social network data sets, namely, a coauthorship network data set and a Facebook friendship network data set. The results reveal a significant improvement in predicting future links.


Link prediction Time stamps Temporal behavior Social networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamic, L.A., Adar, E.: Friends and neighbors on the web. Social Networks 25, 211–230 (2003)CrossRefGoogle Scholar
  2. 2.
    Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)zbMATHGoogle Scholar
  3. 3.
    Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297 (1995)zbMATHGoogle Scholar
  4. 4.
    Getoor, L.: Link mining: a new data mining challenge. SIGKDD Explor. 5(1), 84–89 (2003)CrossRefGoogle Scholar
  5. 5.
    Getoor, L., Diehl, C.P.: Link mining: a survey. SIGKDD Explor. 7(2), 3–12 (2005)CrossRefGoogle Scholar
  6. 6.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  7. 7.
    Hasan, M.A., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: Proceedings of SDM 2006 Workshop on Link Analysis, Counterterrorism and Security (2006)Google Scholar
  8. 8.
    Leroy, V., Cambazoglu, B.B., Bonchi, F.: Cold start link prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 393–402 (2010)Google Scholar
  9. 9.
    Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: Proceedings of the 12th International Conference on Information and Knowledge Management, pp. 556–559 (2003)Google Scholar
  10. 10.
    Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 243–252 (2010)Google Scholar
  11. 11.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  12. 12.
    Newman, M.E.J.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64(2), 025102 (2001)CrossRefGoogle Scholar
  13. 13.
    Pavlov, M., Ichise, R.: Finding experts by link prediction in co-authorship networks. In: Proceedings of the Workshop on Finding Experts on the Web with Semantics (November 2007)Google Scholar
  14. 14.
    Quinlan, J.R.: C4.5: programs for machine learning (1993)Google Scholar
  15. 15.
    Sachan, M., Ichise, R.: Using abstract information and community alignment information for link prediction. In: Proceedings of 2nd International Conference on Machine Learning and Computing (ICMLC), pp. 61–65 (2010)Google Scholar
  16. 16.
    Tylenda, T., Angelova, R., Bedathur, S.: Towards time-aware link prediction in evolving social networks. In: Proceedings of the 3rd Workshop on Social Network Mining and Analysis, pp. 1–10 (2009)Google Scholar
  17. 17.
    Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the Evolution of User Interaction in Facebook. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Social Networks (August 2009)Google Scholar
  18. 18.
    Wang, C., Satuluri, V., Parthasarathy, S.: Local probabilistic models for link prediction. In: Proceedings of the 7th IEEE International Conference on Data Mining, pp. 322–331 (2007)Google Scholar
  19. 19.
    Wohlfarth, T., Ichise, R.: Semantic and event-based approach for link prediction. In: Yamaguchi, T. (ed.) PAKM 2008. LNCS (LNAI), vol. 5345, pp. 50–61. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lankeshwara Munasinghe
    • 1
  • Ryutaro Ichise
    • 1
  1. 1.Principles of Informatics Research DivisionNational Institute of InformaticsTokyoJapan

Personalised recommendations