Identifying Concatenation Discontinuities by Hierarchical Divisive Clustering of Pitch Contours

  • Milan Legát
  • Jindřich Matoušek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6836)


In this paper, we present the results of a clustering experiment, the aim of which was to show whether or not the proximity of pitch contours is sufficient condition for perceptually smooth transitions at concatenation points in concatenative speech synthesis. The experiment was motivated by a previous finding which had shown that the support vector machine (SVM) classifiers are capable of separating with a high accuracy perceptually continuous and discontinuous joins using the pitch contours extracted from the vicinity of concatenation points as predictors. The experiment has shown that clustering of observations in a form of pitch contours represented in different scales using the euclidean distance as a metric does not prove to be a reliable way of identifying discontinuities at concatenation points.


speech synthesis unit selection concatenation cost pitch contours hierarchical divisive clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hunt, A., Black, A.: Unit selection in a concatenative speech synthesis system using a large speech database. In: ICASSP 1996, Atlanta, Georgia, vol. 1, pp. 373–376 (1996)Google Scholar
  2. 2.
    Dutoit, T.: Corpus–based speech synthesis. In: Benesty, J., Sondhi, M.M., Huang, Y. (eds.) Springer Handbook of Speech Processing. ch. 21, pp. 437–455. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Klabbers, E., Veldhuis, R.: Reducing audible spectral discontinuities. IEEE Transactions on Speech and Audio Processing 9, 39–51 (2001)CrossRefGoogle Scholar
  4. 4.
    Bellegarda, J.R.: A novel discontinuity metric for unit selection text–to–speech synthesis. In: SSW5 2004, Pittsburgh, PA, USA, pp. 133–138 (2004)Google Scholar
  5. 5.
    Vepa, J.: Join cost for unit selection speech synthesis. Ph.D. thesis, University of Edinburgh (2004)Google Scholar
  6. 6.
    Legát, M., Matoušek, J.: Design of the test stimuli for the evaluation of concatenation cost functions. In: Matoušek, V., Mautner, P. (eds.) TSD 2009. LNCS, vol. 5729, pp. 339–346. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Matoušek, J., Tihelka, D., Romportl, J.: Current state of Czech text-to-speech system ARTIC. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2006. LNCS (LNAI), vol. 4188, pp. 439–446. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Legát, M., Matoušek, J.: Collection and analysis of data for evaluation of concatenation cost functions. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2010. LNCS, vol. 6231, pp. 345–352. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Legát, M., Matoušek, J.: Analysis of data collected in listening tests for the purpose of evaluation of concatenation cost functions. In: Habernal, I., Matoušek, V. (eds.) TSD 2011. LNCS(LNAI), vol. 6836, pp. 33–40. Springer, Heidelberg (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Milan Legát
    • 1
  • Jindřich Matoušek
    • 1
  1. 1.Faculty of Applied Sciences, Department of CyberneticsUniversity of West Bohemia in PilsenPlzeňCzech Republic

Personalised recommendations