Multitude of Long-Distance Signal Molecules Acting Via Phloem

Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 14)

Abstract

As sessile organisms, plants use long-range signalling between organs in order to adapt to their environment. The phloem is an important pathway for such long-distance communication. It transports signals that trigger systemic defence responses to wounding, herbivory and infection by plant pathogens. It also plays a pivotal role for developmental transitions, such as floral induction and tuberization, in response to stimuli perceived by the leaves, and physiological adaptation to nutrient deprivation. The signals involved in these processes include hormones, metabolites, proteins and RNAs, transported by mass flow with the phloem translocation stream. Faster signals, such as electropotential waves, can be propagated by the phloem plasma membrane. Most recent studies showed that these signalling pathways can recruit combinations of signal molecules, and that additional steps, such as molecular ‘hopping’ and amplification, may occur within the phloem tissue. This provides a basis to explain how plants cope with multiple environmental stimuli to confer long-lasting effects against stresses and maintain plant growth and development.

Keywords

Salicylic Acid Shoot Apex Shoot Apical Meristem Systemic Acquire Resistance Mobile Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056PubMedCrossRefGoogle Scholar
  2. Abelenda JA, Navarro C, Prat S (2011) From the model to the crop: genes controlling tuber formation in potato. Curr Opin Biotechnol 22:287–292PubMedCrossRefGoogle Scholar
  3. Aki T, Shigyo M, Nakano R, Yoneyama T, Yanagisawa S (2008) Nano scale proteomics revealed the presence of regulatory proteins including three FT-like proteins in phloem and xylem saps from rice. Plant Cell Physiol 49:767–790PubMedCrossRefGoogle Scholar
  4. Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001–1013PubMedCrossRefGoogle Scholar
  5. An H, Roussot C, Suárez-López P, Corbesier L, Vincent C, Piñeiro M, Hepworth S, Mouradov A, Justin S, Turnbull C, Coupland G (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131:3615–3626PubMedCrossRefGoogle Scholar
  6. Attaran E, Zeier TE, Griebel T, Zeier J (2009) Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell 21:954–971PubMedCrossRefGoogle Scholar
  7. Aung K, Lin S-I, Wu C-C, Huang Y-T, C-l Su, Chiou T-J (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–1011PubMedCrossRefGoogle Scholar
  8. Ayre BG, Turgeon R (2004) Graft transmission of a floral stimulant derived from CONSTANS. Plant Physiol 135:2271–2278PubMedCrossRefGoogle Scholar
  9. Ayre BG, Keller F, Turgeon R (2003) Symplastic continuity between companion cells and the translocation stream: long-distance transport is controlled by retention and retrieval mechanisms in the phloem. Plant Physiol 131:1518–1528PubMedCrossRefGoogle Scholar
  10. Banerjee AK, Chatterjee M, Yu Y, Suh S-G, Miller WA, Hannapel DJ (2006) Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18:3443–3457PubMedCrossRefGoogle Scholar
  11. Bari R, Datt Pant B, Stitt M, Scheible WR (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999PubMedCrossRefGoogle Scholar
  12. Bernier G (1988) The control of floral evocation and morphogenesis. Ann Rev Plant Physiol Plant Mol Biol 39:175–219CrossRefGoogle Scholar
  13. Bernier G. My favourite flowering image: the role of cytokinin as a flowering signal. J Exp Bot, in pressGoogle Scholar
  14. Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97:9329–9334PubMedCrossRefGoogle Scholar
  15. Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043PubMedCrossRefGoogle Scholar
  16. Bou-Torrent J, Roig-Villanova I, Martínez-García JF (2008) Light signaling: back to space. Trends Plant Sci 13:108–114PubMedCrossRefGoogle Scholar
  17. Bruce TJA, Pickett JA (2007) Plant defence signalling induced by biotic attacks. Curr Opin Plant Biol 10:387–392PubMedCrossRefGoogle Scholar
  18. Bruce TJA, Matthes MC, Chamberlain K, Woodcock CM, Mohib A, Webster B, Smart LE, Birkett MA, Pickett JA, Napier JA (2008) cis-jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proc Natl Acad Sci USA 105:4553–4558PubMedCrossRefGoogle Scholar
  19. Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53:739–749PubMedCrossRefGoogle Scholar
  20. Buhtz A, Pieritz J, Springer F, Kehr J (2010) Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol 10:64PubMedCrossRefGoogle Scholar
  21. Burleigh SH, Harrison MJ (1999) The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol 119:241–248PubMedCrossRefGoogle Scholar
  22. Callos JD, Medford JI (1994) Organ positions and pattern formation in the shoot apex. Plant J 6:1–7CrossRefGoogle Scholar
  23. Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet-Mercey S, Taconnat L, Renou J-P, Daniel-Vedele F, Fernandez E, Meyer C, Krapp A (2009) The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant J 57:426–435PubMedCrossRefGoogle Scholar
  24. Castaings L, Marchive C, Meyer C, Krapp A (2011) Nitrogen signalling in Arabidopsis: how to obtain insights into a complex signalling network. J Exp Bot 62:1391–1397PubMedCrossRefGoogle Scholar
  25. Chailakhyan MK (1936) New facts in support of the hormonal theory of plant development. Dokl Biol Sci 13:79–83Google Scholar
  26. Chaturvedi R, Krothapalli K, Makandar R, Nandi A, Sparks AA, Roth MR, Welti R, Shah J (2008) Plastid ω3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid. Plant J 54:106–117PubMedCrossRefGoogle Scholar
  27. Chen H, Rosin FM, Prat S, Hannapel DJ (2003) Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation. Plant Physiol 132:1391–1404PubMedCrossRefGoogle Scholar
  28. Chen Z, Agnew JL, Cohen JD, He P, Shan L, Sheen J, Kunkel BN (2007) Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci USA 104:20131–20136PubMedCrossRefGoogle Scholar
  29. Chincinska IA, Liesche J, Krügel U, Michalska J, Geigenberger P, Grimm B, Kühn C (2008) Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiol 146:515–528PubMedCrossRefGoogle Scholar
  30. Chiou T-J, Lin S-I (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206PubMedCrossRefGoogle Scholar
  31. Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421PubMedCrossRefGoogle Scholar
  32. Conti L, Bradley D (2007) TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell 19:767–778PubMedCrossRefGoogle Scholar
  33. Cooper HD, Clarkson DT (1989) Cycling of amino-nitrogen and other nutrients between shoots and roots in cereals—a possible mechanism integrating shoot and root in the regulation of nutrient uptake. J Exp Bot 40:753–762CrossRefGoogle Scholar
  34. Corbesier L, Coupland G (2005) Photoperiodic flowering of Arabidopsis: integrating genetic and physiological approaches to characterization of the floral stimulus. Plant Cell Environ 28:54–66CrossRefGoogle Scholar
  35. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033PubMedCrossRefGoogle Scholar
  36. Crawford NM, Guo F-Q (2005) New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci 10:195–200PubMedCrossRefGoogle Scholar
  37. Cui J, Bahrami AK, Pringle EG, Hernandez-Guzman G, Bender CL, Pierce NE, Ausubel FM (2005) Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc Natl Acad Sci USA 102:1791–1796PubMedCrossRefGoogle Scholar
  38. D’Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, Torti S, Coupland G, Périlleux C (2011) Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J 65:972–979PubMedCrossRefGoogle Scholar
  39. Davis SJ (2009) Integrating hormones into the floral-transition pathway of Arabidopsis thaliana. Plant Cell Environ 32:1201–1210PubMedCrossRefGoogle Scholar
  40. De Torres ZM, Bennett MH, Truman WH, Grant MR (2009) Antagonism between salicylic and abscisic acid reflects early host–pathogen conflict and moulds plant defence responses. Plant J 59:375–386CrossRefGoogle Scholar
  41. Delhaize E, Randall PJ (1995) Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiol 107:207–213PubMedGoogle Scholar
  42. Dinant S, Lemoine R (2010) The phloem pathway: new issues and old debates. C R Biol 333:307–319PubMedCrossRefGoogle Scholar
  43. Dinant S, Bonnemain J, Girousse C, Kehr J (2010) Phloem sap intricacy and interplay with aphid feeding. C R Biol 333:504–515PubMedCrossRefGoogle Scholar
  44. Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S (2008) Activation of the indole-3-acetic acid–amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240PubMedCrossRefGoogle Scholar
  45. Divol F, Vilaine F, Thibivilliers S, Amselem J, Palauqui JC, Kusiak C, Dinant S (2005) Systemic response to aphid infestation by myzus persicae in the phloem of Apium graveolens. Plant Mol Biol 57:517–540PubMedCrossRefGoogle Scholar
  46. Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221PubMedCrossRefGoogle Scholar
  47. Durner J, Klessig DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2:369–374PubMedCrossRefGoogle Scholar
  48. Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209PubMedCrossRefGoogle Scholar
  49. Eriksson S, Böhlenius H, Moritz T, Nilsson O (2006) GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18:2172–2181PubMedCrossRefGoogle Scholar
  50. Fan J, Hill L, Crooks C, Doerner P, Lamb C (2009a) Abscisic acid has a key role in modulating diverse plant–pathogen interactions. Plant Physiol 150:1750–1761PubMedCrossRefGoogle Scholar
  51. Fan S-C, Lin C-S, Hsu P-K, Lin S-H, Tsay Y-F (2009b) The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell 21:2750–2761PubMedCrossRefGoogle Scholar
  52. Farmer EE (2001) Surface-to-air signals. Nature 411:854–856PubMedCrossRefGoogle Scholar
  53. Filleur S, Dorbe M-F, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F (2001) An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett 489:220–224PubMedCrossRefGoogle Scholar
  54. Forde BG (2002a) Local and long-range signaling pathways regulating plant responses to nitrate. Annu Rev Plant Biol 53:203–224PubMedCrossRefGoogle Scholar
  55. Forde BG (2002b) The role of long‐distance signalling in plant responses to nitrate and other nutrients. J Exp Bot 53:39–43PubMedCrossRefGoogle Scholar
  56. Forde BG, Walch-Liu PIA (2009) Nitrate and glutamate as environmental cues for behavioural responses in plant roots. Plant Cell Environ 32:682–693PubMedCrossRefGoogle Scholar
  57. Forouhar F, Yang Y, Kumar D, Chen Y, Fridman E, Park SW, Chiang Y, Acton TB, Montelione GT, Pichersky E, Klessig DF, Tong L (2005) Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc Natl Acad Sci USA 102:1773–1778PubMedCrossRefGoogle Scholar
  58. Franco-Zorrilla JM, Martin AC, Leyva A, Paz-Ares J (2005) Interaction between phosphate-starvation, sugar, and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant Physiol 138:847–857PubMedCrossRefGoogle Scholar
  59. Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257PubMedCrossRefGoogle Scholar
  60. Frost CJ, Appel HM, Carlson JE, De Moraes CM, Mescher MC, Schultz JC (2007) Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol Lett 10:490–498PubMedCrossRefGoogle Scholar
  61. Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043PubMedCrossRefGoogle Scholar
  62. Furch AC, Hafke JB, Schulz A, van Bel AJ (2007) Ca2+-Mediated remote control of reversible sieve tube occlusion in Vicia faba. J Exp Bot 58:2827–2838PubMedCrossRefGoogle Scholar
  63. Furch AC, van Bel AJ, Fricker MD, Felle HH, Fuchs M, Hafke JB (2009) Sieve element Ca2+ channels as relay stations between remote stimuli and sieve tube occlusion in Vicia faba. Plant Cell 21:2118–2132PubMedCrossRefGoogle Scholar
  64. Furch ACU, Zimmermann MR, Will T, Hafke JB, van Bel AJE (2010) Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima. J Exp Bot 61:3697–3708PubMedCrossRefGoogle Scholar
  65. Gaupels F, Furch AC, Will T, Mur LA, Kogel KH, van Bel AJ (2008) Nitric oxide generation in Vicia faba phloem cells reveals them to be sensitive detectors as well as possible systemic transducers of stress signals. New Phytol 178:634–646PubMedCrossRefGoogle Scholar
  66. Giakountis A, Coupland G (2008) Phloem transport of flowering signals. Curr Opin Plant Biol 11:687–694PubMedCrossRefGoogle Scholar
  67. Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J (2006) Towards the proteome of Brassica napus phloem sap. Proteomics 6:896–909PubMedCrossRefGoogle Scholar
  68. Giehl RFH, Meda AR, von Wirén N (2009) Moving up, down, and everywhere: signaling of micronutrients in plants. Curr Opin Plant Biol 12:320–327PubMedCrossRefGoogle Scholar
  69. Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA 105:803–808PubMedCrossRefGoogle Scholar
  70. Giordanengo P, Brunissen L, Rusterucci C, Vincent C, van Bel A, Dinant S, Girousse C, Faucher M, Bonnemain JL (2010) Compatible plant-aphid interactions: how aphids manipulate plant responses. C R Biol 333:516–523PubMedCrossRefGoogle Scholar
  71. Girin T, El-Kafafi E-S, Widiez T, Erban A, Hubberten H-M, Kopka J, Hoefgen R, Gojon A, Lepetit M (2010) Identification of Arabidopsis mutants impaired in the systemic regulation of root nitrate uptake by the nitrogen status of the plant. Plant Physiol 153:1250–1260PubMedCrossRefGoogle Scholar
  72. Grant M, Lamb C (2006) Systemic immunity. Curr Opin Plant Biol 9:414–420PubMedCrossRefGoogle Scholar
  73. Griebel T, Zeier J (2008) Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiol 147:790–801PubMedCrossRefGoogle Scholar
  74. Guo FQ, Wang R, Crawford NM (2002) The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is regulated by auxin in both shoots and roots. J Exp Bot 53:835–844PubMedCrossRefGoogle Scholar
  75. Gutiérrez RA, Stokes TL, Thum K, Xu X, Obertello M, Katari MS, Tanurdzic M, Dean A, Nero DC, McClung CR, Coruzzi GM (2008) Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. Proc Natl Acad Sci USA 105:4939–4944PubMedCrossRefGoogle Scholar
  76. Hafke JB, van Amerongen JK, Kelling F, Furch AC, Gaupels F, van Bel AJ (2005) Thermodynamic battle for photosynthate acquisition between sieve tubes and adjoining parenchyma in transport phloem. Plant Physiol 138:1527–1537PubMedCrossRefGoogle Scholar
  77. Ham BK, Brandom JL, Xoconostle-Cazares B, Ringgold V, Lough TJ, Lucas WJ (2009) A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex. Plant Cell 21:197–215PubMedCrossRefGoogle Scholar
  78. Hause B, Stenzel I, Miersch O, Maucher H, Kramell R, Ziegler J, Wasternack C (2000) Tissue-specific oxylipin signature of tomato flowers: allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles. Plant J 24:113–126PubMedCrossRefGoogle Scholar
  79. Hause B, Hause G, Kutter C, Miersch O, Wasternack C (2003) Enzymes of jasmonate biosynthesis occur in tomato sieve elements. Plant Cell Physiol 44:643–648PubMedCrossRefGoogle Scholar
  80. Hecht V, Laurie RE, Vander Schoor JK, Ridge S, Knowles CL, Liew LC, Sussmilch FC, Murfet IC, Macknight RC, Weller JL (2011) The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell 23:147–161PubMedCrossRefGoogle Scholar
  81. Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104:5467–5472PubMedCrossRefGoogle Scholar
  82. Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends Plant Sci 13:264–272PubMedCrossRefGoogle Scholar
  83. Hind SR, Malinowski R, Yalamanchili R, Stratmann JW (2010) Tissue-type specific systemin perception and the elusive systemin receptor. Plant Signal Behav 5:42–44PubMedCrossRefGoogle Scholar
  84. Hoad GV (1995) Transport of hormones in the phloem of higher plants. Plant Growth Regul 16:173–182CrossRefGoogle Scholar
  85. Hu H-C, Wang Y-Y, Tsay Y-F (2009) AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant J 57:264–278PubMedCrossRefGoogle Scholar
  86. Ivashikina N, Deeken R, Ache P, Kranz E, Pommerrenig B, Sauer N, Hedrich R (2003) Isolation of AtSUC2 promoter-GFP-marked companion cells for patch-clamp studies and expression profiling. Plant J 36:931–945PubMedCrossRefGoogle Scholar
  87. Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev 16:2006–2020PubMedCrossRefGoogle Scholar
  88. Jackson SD, Heyer A, Dietze J, Prat S (1996) Phytochrome B mediates the photoperiodic control of tuber formation in potato. Plant J 9:159–166CrossRefGoogle Scholar
  89. Jackson SD, James P, Prat S, Thomas B (1998) Phytochrome B affects the levels of a graft-transmissible signal involved in tuberization. Plant Physiol 117:29–32PubMedCrossRefGoogle Scholar
  90. Jaeger KE, Wigge PA (2007) FT protein acts as a long-range signal in Arabidopsis. Curr Biol 17:1050–1054PubMedCrossRefGoogle Scholar
  91. Jaillais Y, Chory J (2011) Unraveling the paradoxes of plant hormone signaling integration. Nat Struct Mol Biol 17:642–645CrossRefGoogle Scholar
  92. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  93. Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT (2009) Priming in systemic plant immunity. Science 324:89–91PubMedCrossRefGoogle Scholar
  94. Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF (2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci USA 98:9448–9453PubMedCrossRefGoogle Scholar
  95. Kachroo A, Venugopal SC, Lapchyk L, Falcone D, Hildebrand D, Kachroo P (2004) Oleic acid levels regulated by glycerolipid metabolism modulate defense gene expression in Arabidopsis. Proc Natl Acad Sci USA 101:5152–5157PubMedCrossRefGoogle Scholar
  96. Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol 146:1459–1468PubMedCrossRefGoogle Scholar
  97. Kehr J (2009) Long-distance transport of macromolecules through the phloem. F1000. Biol Rep 1:131Google Scholar
  98. Kempers R, van Bel AJE (1997) Symplasmic connections between sieve element and companion cell in the stem phloem of Vicia faba L. have a molecular exclusion limit of at least 10 kDa. Planta 201:195–201CrossRefGoogle Scholar
  99. Kiefer IW, Slusarenko AJ (2003) The pattern of systemic acquired resistance induction within the Arabidopsis rosette in relation to the pattern of translocation. Plant Physiol 132:840–847PubMedCrossRefGoogle Scholar
  100. Kim M, Canio W, Kessler S, Sinha N (2001) Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293:287–289PubMedCrossRefGoogle Scholar
  101. King RW, Evans LT (2003) Gibberellins and flowering of grasses and cereals: prizing open the lid of the “florigen” black box. Annu Rev Plant Biol 54:307–328PubMedCrossRefGoogle Scholar
  102. King RW, Moritz T, Evans LT, Junttila O, Herlt AJ (2001) Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Physiol 127:624–632PubMedCrossRefGoogle Scholar
  103. King RW, Moritz T, Evans LT, Martin J, Andersen CH, Blundell C, Kardailsky I, Chandler PM (2006) Regulation of flowering in the long-day grass Lolium temulentum by gibberellins and the FLOWERING LOCUS T gene. Plant Physiol 141:498–507PubMedCrossRefGoogle Scholar
  104. King RW, Mander LN, Asp T, MacMillan CP, Blundell CA, Evans LT (2008) Selective deactivation of gibberellins below the shoot apex is critical to flowering but not to stem elongation of Lolium. Mol Plant 1:295–307PubMedCrossRefGoogle Scholar
  105. Knoblauch M, Peters WS (2010) Münch, morphology, microfluidics—our structural problem with the phloem. Plant Cell Environ 33:1439–1452PubMedGoogle Scholar
  106. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962PubMedCrossRefGoogle Scholar
  107. Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987PubMedCrossRefGoogle Scholar
  108. Komiya R, Yokoi S, Shimamoto K (2009) A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136:3443–3450PubMedCrossRefGoogle Scholar
  109. Koo AJK, Howe GA (2009) The wound hormone jasmonate. Phytochemistry 70:1571–1580PubMedCrossRefGoogle Scholar
  110. Koo AJK, Gao X, Daniel Jones A, Howe GA (2009) A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J 59:974–986PubMedCrossRefGoogle Scholar
  111. Krouk G, Crawford NM, Coruzzi GM, Tsay Y-F (2010a) Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol 13:265–272CrossRefGoogle Scholar
  112. Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A (2010b) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927–937PubMedCrossRefGoogle Scholar
  113. Krouk G, Ruffel S, Gutiérrez RA, Gojon A, Crawford NM, Coruzzi GM, Lacombe B (2011) A framework integrating plant growth with hormones and nutrients. Trends Plant Sci 16:178–182PubMedCrossRefGoogle Scholar
  114. Kumar D, Klessig DF (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc Natl Acad Sci USA 100:16101–16106PubMedCrossRefGoogle Scholar
  115. Lalonde S, Tegeder M, Throne-Holst M, Frommer WB, Patrick JW (2003) Phloem loading and unloading of sugars and amino acids. Plant Cell Environ 26:37–56CrossRefGoogle Scholar
  116. Lang A (1952) Physiology of flowering. Ann Rev Plant Physiol 3:265–306CrossRefGoogle Scholar
  117. Laubinger S, Marchal V, Le Gourrierec J, Wenkel S, Adrian J, Jang S, Kulajta C, Braun H, Coupland G, Hoecker U (2006) Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133:3213–3222PubMedCrossRefGoogle Scholar
  118. Le Hir R, Beneteau J, Bellini C, Vilaine F, Dinant S (2008) Gene expression profiling: keys for investigating phloem functions. Trends Plant Sci 13:273–280PubMedCrossRefGoogle Scholar
  119. Lee GI, Howe GA (2003) The tomato mutant spr1 is defective in systemin perception and the production of a systemic wound signal for defense gene expression. Plant J 33:567–576PubMedCrossRefGoogle Scholar
  120. Lehesranta SJ, Lichtenberger R, Helariutta Y (2010) Cell-to-cell communication in vascular morphogenesis. Curr Opin Plant Biol 13:59–65PubMedCrossRefGoogle Scholar
  121. Leitner M, Vandelle E, Gaupels F, Bellin D, Delledonne M (2009) NO signals in the haze: nitric oxide signalling in plant defence. Curr Opin Plant Biol 12:451–458PubMedCrossRefGoogle Scholar
  122. Lejay L, Tillard P, Lepetit M, Olive Francesc D, Filleur S, Daniel-Vedele F, Gojon A (1999) Molecular and functional regulation of two NO3– uptake systems by N- and C-status of Arabidopsis plants. Plant J 18:509–519PubMedCrossRefGoogle Scholar
  123. Lejay L, Gansel X, Cerezo M, Tillard P, Müller C, Krapp A, von Wirén N, Daniel-Vedele F, Gojon A (2003) Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase. Plant Cell 15:2218–2232PubMedCrossRefGoogle Scholar
  124. Lejay L, Wirth J, Pervent M, Cross JM-F, Tillard P, Gojon A (2008) Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis. Plant Physiol 146:2036–2053PubMedCrossRefGoogle Scholar
  125. Leon-Reyes A, Spoel SH, De Lange ES, Abe H, Kobayashi M, Tsuda S, Millenaar FF, Welschen RAM, Ritsema T, Pieterse CMJ (2009) Ethylene modulates the role of nonexpressor of pathogenesis-related genes1 in cross talk between salicylate and jasmonate signaling. Plant Physiol 149:1797–1809PubMedCrossRefGoogle Scholar
  126. Leon-Reyes A, Du Y, Koornneef A, Proietti S, Körbes AP, Memelink J, Pieterse CMJ, Ritsema T (2010) Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Mol Plant Microbe Interact 23:187–197PubMedCrossRefGoogle Scholar
  127. Li C, Dubcovsky J (2008) Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J 55:543–554PubMedCrossRefGoogle Scholar
  128. Li C, Liu G, Xu C, Lee GI, Bauer P, Ling HQ, Ganal MW, Howe GA (2003) The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15:1646–1661PubMedCrossRefGoogle Scholar
  129. Li P, Ham B-K, Lucas WJ (2011) CmRBP50 Protein phosphorylation is essential for assembly of a stable phloem-mobile high-affinity ribonucleoprotein complex. J Biol Chem 286:23142–23149PubMedCrossRefGoogle Scholar
  130. Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci USA 103:6398–6403PubMedCrossRefGoogle Scholar
  131. Lin M-K, Belanger H, Lee YJ, Varkonyi-Gasic E, Taoka K-I, Miura E, Xoconostle-Cázares B, Gendler K, Jorgensen RA, Phinney B, Lough TJ, Lucas WJ (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19:1488–1506PubMedCrossRefGoogle Scholar
  132. Lin S-I, Chiang S-F, Lin W-Y, Chen J-W, Tseng C-Y, Wu P-C, Chiou T-J (2008) Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol 147:732–746PubMedCrossRefGoogle Scholar
  133. Linkohr BI, Williamson LC, Fitter AH, Leyser HM (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760PubMedCrossRefGoogle Scholar
  134. Little DY, Rao H, Oliva S, Fo D-V, Krapp A, Malamy JE (2005) The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc Natl Acad Sci USA 102:13693–13698PubMedCrossRefGoogle Scholar
  135. Liu C, Muchhal US, Uthappa M, Kononowicz AK, Raghothama KG (1998) Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol 116:91–99PubMedCrossRefGoogle Scholar
  136. Liu T-Y, Chang C-Y, Chiou T-J (2009) The long-distance signaling of mineral macronutrients. Curr Opin Plant Biol 12:312–319PubMedCrossRefGoogle Scholar
  137. Liu P-P, von Dahl CC, Park S-W, Klessig DF (2011a) Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco. Plant Physiol 155:1762–1768PubMedCrossRefGoogle Scholar
  138. Liu T-Y, Aung K, Tseng C-Y, Chang T-Y, Chen Y-S, Chiou T-J (2011b) Vacuolar Ca2+/H+ transport activity is required for systemic phosphate homeostasis involving shoot-to-root signaling in Arabidopsis. Plant Physiol 156:1176–1189Google Scholar
  139. López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874PubMedCrossRefGoogle Scholar
  140. Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Ann Rev Plant Biol 57:203–232CrossRefGoogle Scholar
  141. Ma Y, Miura E, Ham B-K, Cheng H-W, Lee Y-J, Lucas WJ (2010) Pumpkin eIF5A isoforms interact with components of the translational machinery in the cucurbit sieve tube system. Plant J 64:536–550PubMedCrossRefGoogle Scholar
  142. Maffei ME, Mithofer A, Boland W (2007) Before gene expression: early events in plant–insect interaction. Trends Plant Sci 12:310–316PubMedCrossRefGoogle Scholar
  143. Makandar R, Nalam V, Chaturvedi R, Jeannotte R, Sparks AA, Shah J (2010) Involvement of salicylate and jasmonate signaling pathways in Arabidopsis interaction with Fusarium graminearum. Mol Plant Microbe Interact 23:861–870PubMedCrossRefGoogle Scholar
  144. Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399PubMedCrossRefGoogle Scholar
  145. Malinowski R, Higgins R, Luo Y, Piper L, Nazir A, Bajwa V, Clouse S, Thompson P, Stratmann J (2009) The tomato brassinosteroid receptor BRI1 increases binding of systemin to tobacco plasma membranes, but is not involved in systemin signaling. Plant Mol Biol 70:603–616PubMedCrossRefGoogle Scholar
  146. Mancuso S (1999) Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Aust J Plant Physiol 26:55–61CrossRefGoogle Scholar
  147. Manosalva PM, Park S-W, Forouhar F, Tong L, Fry WE, Klessig DF (2010) Methyl esterase 1 (StMES1) is required for systemic acquired resistance in potato. Mol Plant Microbe Interact 23:1151–1163PubMedCrossRefGoogle Scholar
  148. Martin A, Adam H, Díaz-Mendoza M, Żurczak M, González-Schain ND, Suárez-López P (2009) Graft-transmissible induction of potato tuberization by the microRNA miR172. Development 136:2873–2881PubMedCrossRefGoogle Scholar
  149. Mathieu J, Warthmann N, Küttner F, Schmid M (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol 17:1055–1060PubMedCrossRefGoogle Scholar
  150. Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956PubMedGoogle Scholar
  151. Michaels SD, Himelblau E, Kim SY, Schomburg FM, Amasino RM (2005) Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol 137:149–156PubMedCrossRefGoogle Scholar
  152. Miller AJ, Fan X, Shen Q, Smith SJ (2008) Amino acids and nitrate as signals for the regulation of nitrogen acquisition. J Exp Bot 59:111–119PubMedCrossRefGoogle Scholar
  153. Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2:ra45PubMedCrossRefGoogle Scholar
  154. Minchin PEH, Thorpe MR (1987) Measurement of unloading and reloading of photoassimilate within the stem of bean. J Exp Bot 38:211–220CrossRefGoogle Scholar
  155. Mishina TE, Zeier J (2007) Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J 50:500–513PubMedCrossRefGoogle Scholar
  156. Misson J, Thibaud MC, Bechtold N, Raghothama K, Nussaume L (2004) Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Mol Biol 55:727–741PubMedCrossRefGoogle Scholar
  157. Montoya T, Nomura T, Farrar K, Kaneta T, Yokota T, Bishop GJ (2002) Cloning the tomato Curl3 gene highlights the putative dual role of the leucine-rich repeat receptor kinase tBRI1/SR160 in plant steroid hormone and peptide hormone signaling. Plant Cell 14:3163–3176PubMedCrossRefGoogle Scholar
  158. Mudge SR, Rae AL, Diatloff E, Smith FW (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J 31:341–353PubMedCrossRefGoogle Scholar
  159. Mullendore DL, Windt CW, Van As H, Knoblauch M (2010) Sieve tube geometry in relation to phloem flow. Plant Cell 22:579–593PubMedCrossRefGoogle Scholar
  160. Muszynski MG, Dam T, Li B, Shirbroun DM, Hou Z, Bruggemann E, Archibald R, Ananiev EV, Danilevskaya ON (2006) Delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol 142:1523–1536PubMedCrossRefGoogle Scholar
  161. Mutasa-Göttgens E, Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 60:1979–1989PubMedCrossRefGoogle Scholar
  162. Narváez-Vásquez J, Ryan C (2004) The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signaling. Planta 218:360–369PubMedCrossRefGoogle Scholar
  163. Nelson T, Tausta SL, Gandotra N, Liu T (2006) Laser microdissection of plant tissue: what you see is what you get. Annu Rev Plant Biol 57:181–201PubMedCrossRefGoogle Scholar
  164. Ohto M, Onai K, Furukawa Y, Aoki E, Araki T, Nakamura K (2001) Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol 127:252–261PubMedCrossRefGoogle Scholar
  165. Oparka KJ, Turgeon R (1999) Sieve elements and companion cells-traffic control centers of the phloem. Plant Cell 11:739–750PubMedGoogle Scholar
  166. Orians C (2005) Herbivores, vascular pathways, and systemic induction: facts and artifacts. J Chem Ecol 31:2231–2242PubMedCrossRefGoogle Scholar
  167. Orozco-Cardenas ML, Narvaez-Vasquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191PubMedGoogle Scholar
  168. Palauqui JC, Elmayan T, Pollien JM, Vaucheret H (1997) Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J 16:4738–4745PubMedCrossRefGoogle Scholar
  169. Pant BD, Buhtz A, Kehr J, Scheible W-R (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738PubMedCrossRefGoogle Scholar
  170. Park S-W, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116PubMedCrossRefGoogle Scholar
  171. Parker JE (2009) The quest for long-distance signals in plant systemic immunity. Sci Signal 2:pe31PubMedCrossRefGoogle Scholar
  172. Peer WA, Blakeslee JJ, Yang H, Murphy AS (2011) Seven things we think we know about auxin transport. Mol Plant 4:487–504PubMedCrossRefGoogle Scholar
  173. Peng M, Hannam C, Gu H, Bi Y-M, Rothstein SJ (2007) A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J 50:320–337PubMedCrossRefGoogle Scholar
  174. Périlleux C, Bernier G (2002) The control of flowering: do genetical and physiological approaches converge? In: O’Neill SD, Roberts JA (eds) Plant reproduction, vol 6. Sheffield Academic Press, Sheffield, pp 1–32Google Scholar
  175. Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330:1397–1400PubMedCrossRefGoogle Scholar
  176. Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N, Lifschitz E (2001) Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 13:2687–2702PubMedGoogle Scholar
  177. Proust H, Hoffmann B, Xie X, Yoneyama K, Schaefer DG, Yoneyama K, Nogué F, Rameau C (2011) Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development 138:1531–1539PubMedCrossRefGoogle Scholar
  178. Ragni L, Nieminen K, Pacheco-Villalobos D, Sibout R, Schwechheimer C, Hardtke CS (2011) Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell 23:1322–1336PubMedCrossRefGoogle Scholar
  179. Rahayu YS, Walch-Liu P, Neumann G, Römheld V, von Wirén N, Bangerth F (2005) Root-derived cytokinins as long-distance signals for NO3- -induced stimulation of leaf growth. J Exp Bot 56:1143–1152PubMedCrossRefGoogle Scholar
  180. Ranjan A, Fiene G, Fackendahl P, Hoecker U (2011) The Arabidopsis repressor of light signaling SPA1 acts in the phloem to regulate seedling de-etiolation, leaf expansion and flowering time. Development 138:1851–1862PubMedCrossRefGoogle Scholar
  181. Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA 103:19206–19211PubMedCrossRefGoogle Scholar
  182. Rhodes JD, Thain JF, Wildon DC (1996) The pathway for systemic electrical signal conduction in the wounded tomato plant. Planta 200:50–57CrossRefGoogle Scholar
  183. Roberts K, Love AJ, Laval V, Laird J, Tomos AD, Hooks MA, Milner JJ (2007) Long-distance movement of Cauliflower mosaic virus and host defence responses in Arabidopsis follow a predictable pattern that is determined by the leaf orthostichy. New Phytol 175:707–717PubMedCrossRefGoogle Scholar
  184. Rocher F, Chollet JF, Jousse C, Bonnemain JL (2006) Salicylic acid, an ambimobile molecule exhibiting a high ability to accumulate in the phloem. Plant Physiol 141:1684–1693PubMedCrossRefGoogle Scholar
  185. Roldán M, Gómez-Mena C, Ruiz-García L, Salinas J, Martínez-Zapater JM (1999) Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. Plant J 20:581–590PubMedCrossRefGoogle Scholar
  186. Rubin G, Tohge T, Matsuda F, Saito K, W-Rd S (2009) Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21:3567–3584PubMedCrossRefGoogle Scholar
  187. Rustérucci C, Espunya MC, Díaz M, Chabannes M, Martínez MC (2007) S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. Plant Physiol 143:1282–1292PubMedCrossRefGoogle Scholar
  188. Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58:47–69PubMedCrossRefGoogle Scholar
  189. Scheer JM, Ryan CA (2002) The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc Natl Acad Sci USA 99:9585–9590PubMedCrossRefGoogle Scholar
  190. Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369–377PubMedCrossRefGoogle Scholar
  191. Searle I, He Y, Turck F, Vincent C, Fornara F, Krober S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20:898–912PubMedCrossRefGoogle Scholar
  192. Seskar M, Shulaev V, Raskin I (1998) Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol 116:387–392CrossRefGoogle Scholar
  193. Shah J (2009) Plants under attack: systemic signals in defence. Curr Opin Plant Biol 12:459–464PubMedCrossRefGoogle Scholar
  194. Shalit A, Rozman A, Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y, Lifschitz E (2009) The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc Natl Acad Sci USA 106:8392–8397PubMedCrossRefGoogle Scholar
  195. Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3:877–892PubMedGoogle Scholar
  196. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu F-F, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405PubMedCrossRefGoogle Scholar
  197. Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11:445–458PubMedGoogle Scholar
  198. Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA 97:3753–3758PubMedCrossRefGoogle Scholar
  199. Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642PubMedCrossRefGoogle Scholar
  200. Sibout R, Plantegenet S, Hardtke CS (2008) Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root. Curr Biol 18:458–463PubMedCrossRefGoogle Scholar
  201. Sieburth LE, Lee D-K (2010) BYPASS1: how a tiny mutant tells a big story about root-to-shoot signaling. J Integr Plant Biol 52:77–85PubMedCrossRefGoogle Scholar
  202. Sjölund RD (1997) The phloem sieve element: a river runs through it. Plant Cell 9:1137–1146PubMedCrossRefGoogle Scholar
  203. Skøt L, Sanderson R, Thomas A, Skøt K, Thorogood D, Latypova G, Asp T, Armstead I (2011) Allelic variation in the perennial ryegrass FLOWERING LOCUS T gene is associated with changes in flowering time across a range of populations. Plant Physiol 155:1013–1022PubMedCrossRefGoogle Scholar
  204. Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci USA 104:18842–18847PubMedCrossRefGoogle Scholar
  205. Staswick PE (2008) JAZing up jasmonate signaling. Trends Plant Sci 13:66–71PubMedCrossRefGoogle Scholar
  206. Stenzel I, Hause B, Maucher H, Pitzschke A, Miersch O, Ziegler J, Ryan CA, Wasternack C (2003) Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato—amplification in wound signalling. Plant J 33:577–589PubMedCrossRefGoogle Scholar
  207. Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270PubMedCrossRefGoogle Scholar
  208. Stitt M (1999) Nitrate regulation of metabolism and growth. Curr Opin Plant Biol 2:178–186PubMedCrossRefGoogle Scholar
  209. Stratmann JW (2003) Long distance run in the wound response—jasmonic acid is pulling ahead. Trends Plant Sci 8:247–250PubMedCrossRefGoogle Scholar
  210. Suárez-López P (2005) Long-range signalling in plant reproductive development. Int J Dev Biol 49:761–771PubMedCrossRefGoogle Scholar
  211. Suzuki H, Xia Y, Cameron R, Shadle G, Blount J, Lamb C, Dixon RA (2004) Signals for local and systemic responses of plants to pathogen attack. J Exp Bot 55:169–179PubMedCrossRefGoogle Scholar
  212. Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39:792–796PubMedCrossRefGoogle Scholar
  213. Takada S, Goto K (2003) TERMINAL FLOWER 2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15:2856–2865PubMedCrossRefGoogle Scholar
  214. Takei K, Sakakibara H, Taniguchi M, Sugiyama T (2001) Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator. Plant Cell Physiol 42:85–93PubMedCrossRefGoogle Scholar
  215. Takei K, Takahashi T, Sugiyama T, Yamaya T, Sakakibara H (2002) Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. J Exp Bot 53:971–977PubMedCrossRefGoogle Scholar
  216. Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a Protein is a mobile flowering signal in rice. Science 316:1033–1036PubMedCrossRefGoogle Scholar
  217. Teper-Bamnolker P, Samach A (2005) The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell 17:2661–2675PubMedCrossRefGoogle Scholar
  218. Thibaud M-C, Arrighi JF, Bayle V, Chiarenza S, Creff A, Bustos R, Paz-Ares J, Poirier Y, Nussaume L (2010) Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant J 64:775–789PubMedCrossRefGoogle Scholar
  219. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665PubMedCrossRefGoogle Scholar
  220. Thompson MV (2006) Phloem: the long and the short of it. Trends Plant Sci 11:26–32PubMedCrossRefGoogle Scholar
  221. Thompson GA, Goggin FL (2006) Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J Exp Bot 57:755–766PubMedCrossRefGoogle Scholar
  222. Thorpe MR, Ferrieri AP, Herth MM, Ferrieri RA (2007) 11C-imaging: methyl jasmonate moves in both phloem and xylem, promotes transport of jasmonate, and of photoassimilate even after proton transport is decoupled. Planta 226:541–551PubMedCrossRefGoogle Scholar
  223. Thorpe MR, Furch ACU, Minchin PEH, Föller J, Van Bel AJE, Hafke JB (2010) Rapid cooling triggers forisome dispersion just before phloem transport stops. Plant Cell Environ 33:259–271PubMedCrossRefGoogle Scholar
  224. Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M (2007) Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci USA 104:1075–1080PubMedCrossRefGoogle Scholar
  225. Truman WM, Bennett MH, Turnbull CGN, Grant MR (2010) Arabidopsis auxin mutants are compromised in systemic acquired resistance and exhibit aberrant accumulation of various indolic compounds. Plant Physiol 152:1562–1573PubMedCrossRefGoogle Scholar
  226. Tsuji H, Taoka K-i, Shimamoto K (2011) Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol 14:45–52PubMedCrossRefGoogle Scholar
  227. Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Ann Rev Plant Biol 59:573–594CrossRefGoogle Scholar
  228. Turgeon R, Wolf S (2009) Phloem transport: cellular pathways and molecular trafficking. Ann Rev Plant Biol 60:207–221CrossRefGoogle Scholar
  229. Turnbull CGN, Booker JP, Leyser HMO (2002) Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J 32:255–262PubMedCrossRefGoogle Scholar
  230. Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51:1118–1126PubMedCrossRefGoogle Scholar
  231. Urbanus SL, Martinelli AP, Dinh QD, Aizza LCB, Dornelas MC, Angenent GC, Immink RGH (2010) Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition. Plant J 63:60–72PubMedGoogle Scholar
  232. Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006PubMedCrossRefGoogle Scholar
  233. van Bel AJ (2003a) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149CrossRefGoogle Scholar
  234. van Bel AJ (2003b) Transport phloem: low profile, high impact. Plant Physiol 131:1509–1510PubMedGoogle Scholar
  235. van Bel AJ, Gaupels F (2004) Pathogen-induced resistance and alarm signals in the phloem. Mol Plant Pathol 5:495–504CrossRefGoogle Scholar
  236. van Bel AJE, Knoblauch M, Furch ACU, Hafke JB (2011a) Questions on phloem biology. 1. Electropotential waves, Ca2+ fluxes and cellular cascades along the propagation pathway. Plant Sci 181:210–218Google Scholar
  237. van Bel AJE, Furch ACU, Hafke JB, Knoblauch M, Patrick JW (2011b) Questions on phloem biology. 2. Mass flow, molecular hopping, distribution patterns and macromolecular signalling. Plant Sci 181:325–330Google Scholar
  238. van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483PubMedCrossRefGoogle Scholar
  239. Van Norman JM, Breakfield NW, Benfey PN (2011) Intercellular communication during plant development. Plant Cell 23:855–864PubMedCrossRefGoogle Scholar
  240. Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutiérrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:4477–4482PubMedCrossRefGoogle Scholar
  241. Vilaine F, Palauqui JC, Amselem J, Kusiak C, Lemoine R, Dinant S (2003) Towards deciphering phloem: a transcriptome analysis of the phloem of Apium graveolens. Plant J 36:67–81PubMedCrossRefGoogle Scholar
  242. Vlot AC, Klessig DF, Park S-W (2008a) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11:436–442PubMedCrossRefGoogle Scholar
  243. Vlot AC, Liu P-P, Cameron RK, Park S-W, Yang Y, Kumar D, Zhou F, Padukkavidana T, Gustafsson C, Pichersky E, Klessig DF (2008b) Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J 56:445–456PubMedCrossRefGoogle Scholar
  244. Voinnet O, Baulcombe DC (1997) Systemic signalling in gene silencing. Nature 389:553PubMedCrossRefGoogle Scholar
  245. Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–866PubMedCrossRefGoogle Scholar
  246. Walz C, Juenger M, Schad M, Kehr J (2002) Evidence for the presence and activity of a complete antioxidant defence system in mature sieve tubes. Plant J 31:189–197PubMedCrossRefGoogle Scholar
  247. Wang Y-Y, Tsay Y-F (2011) Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport. Plant Cell 23:1945–1957PubMedCrossRefGoogle Scholar
  248. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790PubMedCrossRefGoogle Scholar
  249. Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, Maucher H, Neumerkel J, Feussner I, Miersch O (2006) The wound response in tomato—role of jasmonic acid. J Plant Physiol 163:297–306PubMedCrossRefGoogle Scholar
  250. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059PubMedCrossRefGoogle Scholar
  251. Will T, van Bel AJ (2006) Physical and chemical interactions between aphids and plants. J Exp Bot 57:729–737PubMedCrossRefGoogle Scholar
  252. Will T, Tjallingii WF, Thonnessen A, van Bel AJ (2007) Molecular sabotage of plant defense by aphid saliva. Proc Natl Acad Sci USA 104:10536–10541PubMedCrossRefGoogle Scholar
  253. Will T, Kornemann SR, Furch ACU, Tjallingii WF, van Bel AJE (2009) Aphid watery saliva counteracts sieve-tube occlusion: a universal phenomenon? J Exp Bot 212:3305–3312Google Scholar
  254. Windt CW, Vergeldt FJ, Jager PAD, Van As H (2006) MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant Cell Environ 29:1715–1729PubMedCrossRefGoogle Scholar
  255. Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24PubMedCrossRefGoogle Scholar
  256. Wu J, Wang L, Baldwin I (2008) Methyl jasmonate-elicited herbivore resistance: does MeJA function as a signal without being hydrolyzed to JA? Planta 227:1161–1168PubMedCrossRefGoogle Scholar
  257. Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, Dixon RA, Lamb C (2004) An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J 23:980–988PubMedCrossRefGoogle Scholar
  258. Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T (2005) TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol 46:1175–1189PubMedCrossRefGoogle Scholar
  259. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483PubMedGoogle Scholar
  260. Yoneyama K, Takeuchi Y, Sekimoto H (2007) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–1038PubMedCrossRefGoogle Scholar
  261. Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, Lough TJ, Lucas WJ (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000PubMedCrossRefGoogle Scholar
  262. Yoo SJ, Chung KS, Jung SH, Yoo SY, Lee JS, Ahn JH (2010) BROTHER OF FT AND TFL1 (BFT) has TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis. Plant J 63:241–253PubMedCrossRefGoogle Scholar
  263. Zeevaart JAD (2008) Leaf-produced floral signals. Curr Opin Plant Biol 11:541–547PubMedCrossRefGoogle Scholar
  264. Zhang J, Zhou J-M (2010) Plant immunity triggered by microbial molecular signatures. Mol Plant 3:783–793PubMedCrossRefGoogle Scholar
  265. Zhao M, Ding H, Zhu J-K, Zhang F, Li W-X (2011) Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190:906–915PubMedCrossRefGoogle Scholar
  266. Zhu Q-H, Helliwell CA (2011) Regulation of flowering time and floral patterning by miR172. J Exp Bot 62:487–495PubMedCrossRefGoogle Scholar
  267. Zimmermann MR, Maischak H, Mithofer A, Boland W, Felle HH (2009) System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiol 149:1593–1600PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut Jean Pierre Bourgin, UMR1318, Institut National de la Recherche AgronomiqueVersaillesFrance
  2. 2.Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UBBarcelonaSpain

Personalised recommendations