Deep Ultraviolet Light-Emitting Diodes

  • Michael Shur
  • Max Shatalov
  • Alex Dobrinsky
  • Remis Gaska
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 156)


A review is given of the current state-of-the-art in nitride-based UV light-emitting diodes. We begin with a summary of applications for these compact light sources and then detail recent improvements in the quality of epitaxial wafers and optimization of the structure design that have enabled increases in the DUV LED device area while retaining reasonable quantum efficiency at low current densities.


  1. 1.
    M.S. Shur, R. Gaska, Deep-ultraviolet light-emitting diodes. IEEE Trans. Electron Dev. 57, 12–25 (2010)CrossRefGoogle Scholar
  2. 2.
    Y. Taniyasu, M. Kasu, T. Makimoto, An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441, 325–328 (2006) doi: 10.1038/nature04760CrossRefGoogle Scholar
  3. 3.
    I. Gaska, O. Bilenko, I. Shturm, Y. Bilenko, M. Shatalov, R. Gaska, Efficiency of point-of-use water disinfection using deep UV light emitting diode technology. Cleantech, June, 13–16, 2011, Boston, MAGoogle Scholar
  4. 4.
    S.J. Britz, Deep Ultraviolet Light-Emitting Diodes – A Transformative Technology to Enhance the Nutritional Value of Plants. Workshop on Frontiers in Electronics (2009)Google Scholar
  5. 5.
    R. Gaska, Y. Bilenko, M.S. Shur, Organism growth suppression using ultraviolet radiation. United States Patent 7,553,456 (2009a)Google Scholar
  6. 6.
    R. Gaska, M.S. Shur, Y. Bilenko, Ultraviolet radiation sterilization, United States Patent US7634996 (2009b)Google Scholar
  7. 7.
  8. 8.
    S. Sawyer, S. Rumyantsev, M.S. Shur, N. Pala, Y. Bilenko, J. Zhang, X. Hu, A. Lunev, J. Deng, R. Gaska, Current and optical noise of GaN/AlGaN light emitting diodes. J. Appl. Phys. 100, 4504 (2006)CrossRefGoogle Scholar
  9. 9.
    K.X. Sun, N. Leindecker, S. Higuchi, J. Goebel, S. Buchman, R.L. Byer, UV LED operation lifetime and radiation hardness qualification for space flights. J. Phys.: Conf. Ser. 154, 012028 (2009)Google Scholar
  10. 10.
    M. Shatalov, W. Sun, Y. Bilenko, A. Sattu, X. Hu, J. Deng, J. Yang, M.S. Shur, C. Moe, M. Wraback, R. Gaska, Large chip high power deep ultraviolet light-emitting diodes. Appl. Phys. Exp. 3, 2101 (2010)CrossRefGoogle Scholar
  11. 11.
    W. Sun, M. Shatalov, J. Deng, X. Hu, J. Yang, A. Lunev, Y. Bilenko, M.S. Shur, R. Gaska, Efficiency droop in 245–247 nm AlGaN light-emitting diodes with continuous wave 2 mW output power. Appl. Phys. Lett. 96, 1102 (2010)Google Scholar
  12. 12.
    K. Ban, J. Yamamoto, K. Takeda, K. Ide, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, Internal quantum efficiency of whole-composition-range AlGaN multiquantum wells. Appl. Phys. Exp. 4, 2101 (2011)CrossRefGoogle Scholar
  13. 13.
    S.Y. Karpov, N. Makarov, Dislocation effect on light emission efficiency in gallium nitride. Appl. Phys. Lett. 81, 4721 (2002)CrossRefGoogle Scholar
  14. 14.
    A. Fujioka, T. Misaki, T. Murayama, Y. Narukawa, T. Mukai, Improvement in output power of 280-nm deep ultraviolet light-emitting diode by using AlGaN multi quantum wells. Appl. Phys. Exp. 3(4), 041001 (2010)Google Scholar
  15. 15.
    C. Pernot, M. Kim, S. Fukahori, T. Inazu, T. Fujita, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, Improved efficiency of 255–280 nm AlGaN-based light-emitting diodes, Appl. Phys. Exp. 3, 061004 (2010)CrossRefGoogle Scholar
  16. 16.
    DARPA Compact Mid-Ultraviolet Technology, DARPA-BAA-10–45, (2010)Google Scholar
  17. 17.
  18. 18.
    N. Nepal, J. Li, M.L. Nakarmi, J.Y. Lin, H.X. Jiang, Temperature and compositional dependence of the energy band gap of AlGaN alloys. Appl. Phys. Lett. 87, 2104 (2005)CrossRefGoogle Scholar
  19. 19.
    E.F. Schubert, Light-emitting diodes, 2nd edn. (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  20. 20.
    I. Vurgaftman, J.R. Meyer, Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675–3696 (2003)CrossRefGoogle Scholar
  21. 21.
    R.S. Rumyantsev, M.S. Shur, M. Levinshtein, Nitride materials properties, in GaN-based materials and devices growth, fabrication, characterization and performance. World Scientific, Singapore; River Edge, NJ (2004)Google Scholar
  22. 22.
    M. Shatalov, M. Gaevski, V. Adivarahan, A. Khan, Room-temperature stimulated emission from AlN at 214 nm. Jpn. Appl. Phys. 45(49), L1286–L1288 (2006)CrossRefGoogle Scholar
  23. 23.
    M. Levinshtein, S. Rumyantsev, M.S. Shur, Properties of advanced semiconductor materials: GaN, AlN, InN, BN, SiC, SiGe. (Wiley, New York, 2001)Google Scholar
  24. 24.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Steady-state and transient electron transport within the III–V nitride semiconductors, GaN, AlN, and InN: a review. J. Mater. Sci: Mater. Electron 17, 87–126 (2006) doi: 10.1007/s10854–006–5624–2CrossRefGoogle Scholar
  25. 25.
    M. Shatalov, J. Yang, Y. Bilenko, M.S. Shur, R. Gaska, High power III-nitride UV emitters, in CLEO:2011 – laser applications to photonic applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Joint Symposium on Semiconductor Ultraviolet LEDs and Lasers: Semiconductor Mid-UV LEDs and Lasers, (2011)Google Scholar
  26. 26.
    Q. Fareed, R. Gaska, M.S. Shur, Methods of growing nitride-based film using varying pulses. US Patent 7192849, (2007)Google Scholar
  27. 27.
    R. Gaska, Q. Fareed, G. Tamulaitis, I. Yilmaz, M.S. Shur, C. Chen, J. Yang, E. Kuokstis, A. Khan, J.C. Rojo, L.J. Schowalter, (2003) Stimulated emission at 258 nm in AlN/AlGaN quantum wells grown on bulk AlN substrates. Mat. Res. Symp. Proc. 743, L6.30 (2003)Google Scholar
  28. 28.
    M. Kneissl, Z. Yang, M. Teepe, C. Knollenberg, O. Schmidt, P. Kiesel, N.M. Johnson, S. Schujman, L.J. Schowalter, Ultraviolet semiconductor laser diodes on bulk AlN. J. Appl. Phys. 101, 3103 (2007)CrossRefGoogle Scholar
  29. 29.
    F. Mymrin, K.A. Bulashevich, N.I. Podolskaya, S.Y. Karpov, Bandgap engineering of electronic and optoelectronic devices on native AlN and GaN substrates: a modelling insight. J. Cryst. Growth 281, 115–124 (2005)CrossRefGoogle Scholar
  30. 30.
    T. Nishida, T. Makimoto, H. Saito, T. Ban, AlGaN-based ultraviolet light-emitting diodes grown on bulk AlN substrates. Appl. Phys. Lett. 84, 1002 (2004)CrossRefGoogle Scholar
  31. 31.
    Z. Ren, Q. Sun, S.Y. Kwon, J. Han, K. Davitt, Y.K. Song, A.V. Nurmikko, H.K. Cho, W. Liu, J.A. Smart, L.J. Schowalter, Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes. Appl. Phys. Lett. 91, 1116 (2007)Google Scholar
  32. 32.
    G. Tamulaitis, I. Yilmaz, M.S. Shur, Q. Fareed, R. Gaska, M.A. Khan, Photoluminescence of AlGaN grown on bulk AlN substrates. Appl. Phys. Lett. 85, 206 (2004) doi: 10.1063/1.1771804CrossRefGoogle Scholar
  33. 33.
    Compound Semiconductors (2011) AlN: can it become a universal substrate for III-nitrides?
  34. 34.
    H. Amano, I. Akasaki, Novel aspects of the growth of nitrides by MOVPE. J. Phys.: Condens. Mater. 13, 6935–6944 (2001)Google Scholar
  35. 35.
    M.E. Aumer, S.F. Leboeuf, F.G. McIntosh, S.M. Bedair, High optical quality AlInGaN by metalorganic chemical vapor deposition. Appl. Phys. Lett. 75, 3315 (1999)CrossRefGoogle Scholar
  36. 36.
    H. Gotoh, T. Suga, H. Suzuki, M. Kimata, Low temperature growth of gallium nitride. Jpn. J. Appl. Phys. 20, L545–L548 (1981)CrossRefGoogle Scholar
  37. 37.
    J. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. Yang, G. Simin, M.A. Khan, R. Gaska, M.S. Shur, Pulsed atomic layer epitaxy of quaternary AlInGaN layers. Appl. Phys. Lett. 79, 925 (2001)CrossRefGoogle Scholar
  38. 38.
    K. Kazlauskas, A. Zkauskas, G. Tamulaitis, J. Mickevicius, M.S. Shur, Q. Fareed, J. Zhang, R. Gaska: Exciton hopping and nonradiative decay in AlGaN epilayers. Appl. Phys. Lett. 87, 172102 (2005) doi: 10.1063/1.2112169CrossRefGoogle Scholar
  39. 39.
    R. Jain, W. Sun, J. Yang, M. Shatalov, X. Hu, A. Sattu, A. Lunev, J. Deng, I. Shturm, Y. Bilenko, R. Gaska, M.S. Shur, Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes. Appl. Phys. Lett. 93, 1113 (2008)Google Scholar
  40. 40.
    A.D. Bykhovski, B.L. Gelmont, M.S. Shur, Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices. J. Appl. Phys. 81, 6332–6338 (1997)Google Scholar
  41. 41.
    A.D. Bykhovski, B.L. Gelmont, M.S. Shur, The influence of the strain-induced electric field on the charge distribution in GaN-AlN-GaN structure. J. Appl. Phys. 74, 6734–6739 (1993)CrossRefGoogle Scholar
  42. 42.
    A. Pinos, V. Liuolia, S. Marcinkevìcius, J. Yang, R. Gaska, M.S. Shur, Localization potentials in AlGaN epitaxial films studied by scanning near-field optical spectroscopy. J. Appl. Phys. 109(11), 113516 (2011a)Google Scholar
  43. 43.
    C.J. Collins, A.V. Sampath, G.A. Garrett, W.L. Sarney, H. Shen, M. Wraback, A.Y. Nikiforov, G.S. Cargill, V. Dierolf, Enhanced room-temperature luminescence efficiency through carrier localization in AlxGa1 − xN alloys. Appl. Phys Lett. 86(3), 031916 (2005)Google Scholar
  44. 44.
    Y.B. Lee, T. Wang, Y.H. Liu, J.P. Ao, H.D. Li, H. Sato, K. Nishino, Y. Naoi, S. Sakai, Fabrication of high-output-power AlGaN/GaN-Based UV-light-emitting diode using a Ga droplet layer. Jpn. J. Appl. Phys. 41(Part 2, No. 10A), L1037–L1039 (2002)Google Scholar
  45. 45.
    A. Pinos, S. Marcinkevicìus, J. Yang, Y. Bilenko, M. Shatalov, R. Gaska, M.S. Shur, Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy. Appl. Phys. Lett. 95(18), 181914 (2009)Google Scholar
  46. 46.
    G. Tamulaitis, K. Kazlauskas, A. Žukauskas, J. Mickeviius, M.S. Shur, Q. Fareed, J. Zhang, R. Gaska, Study of exciton hopping in AlGaN epilayers by photoluminescence spectroscopy and Monte Carlo simulation. Phys. Stat. Sol. (c). 3, 2099–2102 (2006) doi: 10.1002/pssc.200565334Google Scholar
  47. 47.
    A. Laubsch, M. Sabathil, J. Baur, M. Peter, B. Hahn, High-power and high-efficiency InGaN-based light emitters. IEEE Trans. Electron Dev. 57, 79–87 (2010). doi: 10.1109/TED.2009.2035538CrossRefGoogle Scholar
  48. 48.
    O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85, 3222–3233 (1999)CrossRefGoogle Scholar
  49. 49.
    S.H. Park, S.L. Chuang, Spontaneous polarization effects in wurtzite GaN/AlGaN quantum wells and comparison with experiment. Appl. Phys. Lett. 76, 1981 (2000)CrossRefGoogle Scholar
  50. 50.
    S. Marcinkevicìus, A. Pinos, K. Liu, D. Veksler, M.S. Shur, J. Zhang, R. Gaska, Intrinsic electric fields in AlGaN quantum wells. Appl. Phys. Lett. 90, 081914 (2007) doi: 10.1063/1.2679864CrossRefGoogle Scholar
  51. 51.
    A. Pinos, S. Marcinkevicìus, K. Liu, M.S. Shur, E. Kuoksťis, G. Tamulaitis, R. Gaska, J. Yang, W. Sun, Screening dynamics of intrinsic electric field in AlGaN quantum wells. Appl. Phys. Lett. 92, 061907 (2008) doi: 10.1063/1.2857467CrossRefGoogle Scholar
  52. 52.
    F. Bernardini, V. Fiorentini, Macroscopic polarization and band offsets at nitride heterojunctions. Phys. Rev. B (Condensed Matter and Materials Physics). 57, 9427 (1998)Google Scholar
  53. 53.
    J. Mickevicius, E. Kuokstis, V. Liuolia, G. Tamulaitis, M.S. Shur, J. Yang, R. Gaska, Photoluminescence dynamics of AlGaN quantum wells with built-in electric fields and localized states. Phys. Status Solidi (a). 207, 423–427 (2010) doi: 10.1002/pssa.200925227Google Scholar
  54. 54.
    J. Mickevicìus, G. Tamulaitis, E. Kuoksťis, K. Liu, M.S. Shur, J.P. Zhang, R. Gaska. Well-width-dependent carrier lifetime in AlGaN ∕ AlGaN quantum wells. Appl. Phys. Lett. 90, 131907 (2007) doi: 10.1063/1.2717145CrossRefGoogle Scholar
  55. 55.
    R. Gaska, A.D. Bykhovski, M.S. Shur, Piezoelectric doping and elastic strain relaxation in AlGaN–GaN heterostructure field effect transistors. Appl. Phys. Lett. 73, 3577 (1998)CrossRefGoogle Scholar
  56. 56.
    M.D. Craven, S.H. Lim, F. Wu, J.S. Speck, S.P. DenBaars, Structural characterization of nonpolar (1120) a-plane GaN thin films grown on (1102) r-plane sapphire. Appl. Phys. Lett. 81, 469–471 (2002)CrossRefGoogle Scholar
  57. 57.
    E. Kuokstis, J. Zhang, Q. Fareed, J.W. Yang, G. Simin, M.A. Khan, R. Gaska, M.S. Shur, C. Rojo, L.J. Schowalter, Near-band-edge photoluminescence of wurtzite-type AlN. Appl. Phys. Lett. 81, 2755 (2002)CrossRefGoogle Scholar
  58. 58.
    P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865–868 (2000)CrossRefGoogle Scholar
  59. 59.
    R. Gaska, J. Zhang, M.S. Shur, Heterostructure including light generating structure contained in potential well. US patent number 7619238 (2009d)Google Scholar
  60. 60.
    R. Gaska, J. Zhang, M.S. Shur, Light emitting heterostructure. US patent number 7,537,950 (2009c)Google Scholar
  61. 61.
    M. Shatalov, J. Yang, W. Sun, R. Kennedy, R. Gaska, K. Liu, M.S. Shur, G. Tamulaitis, Efficiency of light emission in high aluminum content AlGaN quantum wells. J Appl. Phys. 105, 073103–073106 (2009)CrossRefGoogle Scholar
  62. 62.
    J. Deng, Y. Bilenko, A. Lunev, X. Hu, T.M. Katona, J. Zhang, M.S. Shur, R. Gaska, 247 nm Ultra-Violet Light Emitting Diodes. Jpn. J. Appl. Phys. 46, L263–L264 (2007)CrossRefGoogle Scholar
  63. 63.
    Y. Bilenko, A. Lunev, X. Hu, J. Deng, T.M. Katona, J. Zhang, R. Gaska, M.S. Shur, W. Sun, V. Adivarahan, M. Shatalov, Khan A. 10 Milliwatt Pulse Operation of 265 nm AlGaN Light Emitting Diodes. Jpn. J. Appl. Phys. 44, L98–L100 (2005)Google Scholar
  64. 64.
    Y. Bilenko, R. Gaska, M.S. Shur, G. Simin, Mounting structure providing electrical surge protection. Pub. No US 2007/0151755 (2007)Google Scholar
  65. 65.
    M.S. Shur, R. Gaska, III-nitride based deep ultraviolet light sources. Gallium Nitride materials and devices III. Ed by Morkoc 6894, 689419 (2008)Google Scholar
  66. 66.
    R. Gaska, J. Zhang, Y. Bilenko, A. Lunev, X. Hu, J. Deng, M.S. Shur, AlGaN-based deep ultraviolet light source. In: Proceedings of WOCSDICE, Venice, Italy (2007a)Google Scholar
  67. 67.
    Y. Bilenko, R. Gaska, M.S. Shur, Nitride-based light emitting heterostructure, Pub. No US 2008/0081390 (2008)Google Scholar
  68. 68.
    Y. Bilenko, R. Gaska, M.S. Shur, Shaped contact layer for light emitting heterostructure, U.S. Patent 7928451, (2011)Google Scholar
  69. 69.
    A. Pinos, S. Marcinkevicìus, M.S. Shur, High current-induced degradation of AlGaN ultraviolet light emitting diodes. J. Appl. Phys. 109, 103108–10 (2011b)CrossRefGoogle Scholar
  70. 70.
    S. Sawyer, S. Rumyantsev, M.S. Shur, Degradation of AlGaN-based ultraviolet light emitting diodes. Solid State Electron 52, 968–972 (2008)CrossRefGoogle Scholar
  71. 71.
    A.I. Zhmakin, Enhancement of light extraction from light emitting diodes. Phys. Rep. 498, 189–241 (2010) doi: 10.1016/j.physrep.2010.11.001CrossRefGoogle Scholar
  72. 72.
    LED Magazine (2004) LED efficiencies
  73. 73.
    X. Hu, J. Deng, J. Zhang, A. Lunev, Y. Bilenko, T. Katona, M.S. Shur, R. Gaska, M. Shatalov, A. Khan, Deep ultraviolet light-emitting diodes. Physica Status Solidi (A). 203, 1815–1818 (2006)Google Scholar
  74. 74.
    A.H. Johnston, T.F. Miyahira, Characterization of proton damage in light-emitting diodes. IEEE Trans. Nucl. Sci. 47, 2500–2507 (2000)CrossRefGoogle Scholar
  75. 75.
    M.A. Khan, R. Gaska, M.S. Shur, J. Yang, Method of producing nitride-based heterostructure devices. US patent 6764888 (2004)Google Scholar
  76. 76.
  77. 77.
    SiLENSE Manual: STR, SiLENSE Manual (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Shur
    • 1
  • Max Shatalov
    • 2
  • Alex Dobrinsky
    • 2
  • Remis Gaska
    • 2
  1. 1.Department of Electrical, Computer and Systems EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.Sensor Electronic Technology, Inc.ColumbiaUSA

Personalised recommendations