Outlook: Is the Universe a Computer?

Chapter
Part of the SpringerBriefs in Complexity book series (BRIEFSCOMPLEXITY)

Abstract

 To answer this question, a deeper analysis of our cosmological models is necessary. In general, principles of symmetry play a central role in physics. The invariance and covariance properties of a system under specific symmetry transformations can either be related to the conservation laws of physics or be capable of establishing the structure of the fundamental physical interactions and forces. This is the most essential aspect of symmetry because it concerns the basic invariance principles of physics and the interactions themselves, and not just the properties of geometric figures (Mainzer 1996).

Keywords

Cellular Automaton Spontaneous Symmetry Breaking Quantum Cosmology Cosmic Expansion Quantum Cellular Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. J. Audretsch, K. Mainzer (eds.), Wieviele Leben hat Schrödingers Katze? Zur Physik und Philosophie der Quantenmechanik, 2nd edn. (Spektrum Akademischer, Verlag, Heidelberg, 1996)Google Scholar
  2. L.O. Chua, CNN: A Paradigm for Complexity (World Scientific, Singapore, 1998)Google Scholar
  3. D. Deutsch, Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer, Proc. R. Soc. Lond. A 400, 97–117 (1985)MathSciNetADSMATHCrossRefGoogle Scholar
  4. P.H. Frampton, Gauge Field Theories, 3rd edn. (Wiley-VCH, New York, 2008)Google Scholar
  5. R. Giles, C. Thorn, Lattice approach to string theory. Phys. Rev. D 16, 366 (1977)ADSCrossRefGoogle Scholar
  6. J. Goldstone, Field theories with ‘superconductor’ solutions. N. Cimento 19, 154–164 (1961)MathSciNetMATHCrossRefGoogle Scholar
  7. S.W. Hawking, J.B. Hartle, T. Hertog, The no-boundary measure of the universe. Phys. Rev. Lett 100, 201301 (2008)MathSciNetADSCrossRefGoogle Scholar
  8. P.W. Higgs, Broken symmetries, massless particles, and gauge fields. Phys. Lett. 12, 132–133 (1964)ADSGoogle Scholar
  9. A.G. Hoekstra, J. Kroc, P.M.A. Sloot (eds.), Simulating Complex Systems by Cellular Automata (Springer, Berlin, 2010)Google Scholar
  10. K. Mainzer, Symmetries of Nature (De Gruyter, New York, 1996) (German 1988: Symmetrien der Natur. De Gruyter: Berlin)Google Scholar
  11. K. Mainzer, Symmetry and Complexity: The Spirit and Beauty of Nonlinear Science (World Scientific, Singapore, 2005a)Google Scholar
  12. K. Mainzer, Symmetry and complexity in dynamical systems. Eur. Rev. Acad. Eur. 13, 29–48 (2005b)Google Scholar
  13. K. Mainzer, Thinking in Complexity. The Computational Dynamics of Matter, Mind, and Mankind (Springer, Berlin, 2007)Google Scholar
  14. M. McGuigan, Quantum cellular automata from lattice field theories (2003), http://arxiv.org/ftp/quant-ph/papers/0307/0307176.pdf
  15. G. ‘t Hooft, K. Isler, S. Kalitzin, Quantum field theoretic behavior of a deterministic cellular automaton. Nucl. Phys. B 386, 495 (1992) Google Scholar

Copyright information

© Klaus Mainzer 2012

Authors and Affiliations

  1. 1.Technische Unviversität München, Lehrstuhl für Philosophie und WissenschaftstheorieMunichGermany
  2. 2.EECS DepartmentUniversity of CaliforniaBerkeleyUSA

Personalised recommendations