Interactions Between Legumes and Rhizobia Under Stress Conditions

  • Javier A. Andrés
  • Marisa Rovera
  • Lorena B. Guiñazú
  • Nicolás A. Pastor
  • Susana B. Rosas


Biological nitrogen fixation is an important factor contributing to the increased productivity of legume plants. However, this process may be affected by adverse conditions to plant, bacterium, or both. Suboptimal conditions in water status, salinity, pH, temperature, and the presence of chemicals and pathogens, among other factors, greatly influence the growth, survival, and metabolic activity of microorganisms and plants, and their ability to enter into symbiotic interactions. In this chapter, we review stressors in the soil and their influence on the symbiotic fixation of nitrogen and some solutions that the research provides in order to extend the cultivation of legumes in suboptimal regions.


  1. Alaa-Eldin MN, Mahmoud S, Makawi A, Abdel-Nasser M, Herzallah N (1981) Effect of preemergence application of some herbicides on nodulation, nitrogen fixation and growth of soybean. Pesq Agrop Bras 16:883–889Google Scholar
  2. Al-Rashidi RK, Loynachan TE, Frederick LR (1982) Desiccation tolerance of four strains of Rhizobium japonicum. Soil Biol Biochem 14:489–493Google Scholar
  3. Andrés JA, Correa NS, Rosas SB (1995) Exudados radicales de alfalfa (Medicago sativa L.) en condiciones de estrés salino. Expresión de genes nod en Rhizobium. Agriscientia 12:87–91Google Scholar
  4. Andrés JA, Correa NS, Rosas SB (1998a) Alfalfa and soybean seed and root exudates treated with thiram inhibit the expression of rhizobia nodulation genes. Int J Exp Bot 62:47–53Google Scholar
  5. Andrés JA, Correa NS, Rosas SB (1998b) Survival and symbiotic properties of Bradyrhizobium japonicum in the presence of thiram: Isolation of fungicide resistant strains. Biol Fertil Soils 26:141–145Google Scholar
  6. Andrews CS (1976) Effect of calcium, pH and nitrogen on the growth and chemical composition of some tropical and temperate pasture legumes. I. Nodulation and growth. Aust J Agric Res 27:611–623Google Scholar
  7. Angelini J, Castro S, Fabra A (2003) Alterations in root colonization and nodC gene induction in the peanut-rhizobia interaction under acidic conditions. Plant Physiol Biochem 41:289–294Google Scholar
  8. Appunu C, Dhar B (2008) Morphology and general characteristics of lytic phages infective on strains of Bradyrhizobium japonicum. Curr Microbiol 56:21–27PubMedGoogle Scholar
  9. Aranjuelo I, Yrigoyen JJ, Sánchez-Díaz M (2007) Effect of elevated temperature and water availability on CO2 exchange and nitrogen fixation of nodulated alfalfa plants. Environ Exp Bot 59:99–108Google Scholar
  10. Arora NK, Singhal V, Maheshwari DK (2006) Salinity-induced accumulation of poly-β-hydroxybutyrate in rhizobia indicating its role in cell protection. World J Microbiol Biotechnol 22(6):603–606Google Scholar
  11. Arora NK, Khare E, Singh S, Maheshwari DK (2010) Effect of Al and heavy metals on enzymes of nitrogen metabolism of fast and slow growing rhizobia under explanta conditions. World J Microbiol Biotechnol 26:811–816Google Scholar
  12. Aurag J, Sasson A (1992) Tolerance of Rhizobium leguminosarum bv. phaseoli to acidity and drought. World J Microbiol Biotechnol 8:532–533Google Scholar
  13. Barbour WM, Elkan GH (1989) Relationship of the presence and copy number of plasmids to exopolysaccharide production and symbiotic effectiveness in Rhizobium fredii USDA 206. Appl Environ Microbiol 55:813–818PubMedGoogle Scholar
  14. Ben Salah I, Albacete A, Martínez Andújar C, Haouala R, Labidi N, Zribi F, Martínez V, Pérez-Alfocea F, Abdelly C (2009) Response of nitrogen fixation in relation to nodule carbohydrate metabolismo in Medicago ciliaris lines subjected to salt stress. J Plant Physiol 166:477–488PubMedGoogle Scholar
  15. Bhat MY, Munawar F, Muddin H (2009) Effect of Meloidogyne incognita Race-1 on the functioning of rhizobial nodules on black gram (Vigna mungo). Indian J Nematol 39:59–64Google Scholar
  16. Bikrol A, Saxena N, Singh K (2005) Response of Glycine max in relation to nitrogen fixation as influenced by fungicide seed treatment. Afr J Biotechnol 4:667–671Google Scholar
  17. Bollich PK, Dunigan EP, Jadi WM (1985) Effects of seven herbicides on N2 (C2H2) fixation by soybeans. Weed Sci 33:427–430Google Scholar
  18. Bottomley P (1991) Ecology of Rhizobium and Bradyrhizobium. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman & Hall, New York, pp 292–347Google Scholar
  19. Bowra B, Dillworth M (1981) Motility and chemotaxis toward sugars in Rhizobium leguminosarum. J Gen Microbiol 126:231–235Google Scholar
  20. Burdman S, Volpin H, Kigel J, Kapulnik Y, Okon Y (1996) Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Appl Environ Microbiol 62:3030–3033PubMedGoogle Scholar
  21. Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of Auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535PubMedGoogle Scholar
  22. Cooper JE (1988) Nodulation of legumes by rhizobia in acid soils. In: Vancura V, Kunc F (eds) Developments in soil science, 18. Elsevier Science, Amsterdam, pp 57–61Google Scholar
  23. Correa N, Thuar A, Rosas S (1989) Efectos del fungicida thiram sobre nodulación en soja. X Reunión de la Sociedad Latinoamericana de Fisiología Vegetal, Puerto Iguazú, Argentina, p 129Google Scholar
  24. Coventry DR, Evans J (1989) Symbiotic nitrogen fixation and soil acidity. In: Robson AD (ed) Soil acidity and plant growth. Academic, Sidney, pp 103–137Google Scholar
  25. Cunningham SD, Munns DN (1984) The correlation between extracelular polysaccharide production and acid tolerance in Rhizobium. Soil Sci Soc Am J 48:1273–1276Google Scholar
  26. Curley RL, Burton JC (1975) Compatibility of Rhizobium japonicum with chemical seed protectants. Agron J 67:807–808Google Scholar
  27. Day DA, Copeland L (1991) Carbon metabolisms and compartmentation in nitrogen fixing legume nodules. Plant Physiol Biochem 29:185–201Google Scholar
  28. Dardanelli MS, Fernández de Córdoba FJ, Espuny MR, Rodríguez Carvajal MA, Soria Díaz ME, Gil Serrano AM, Okon Y, Megías M (2008) Effects of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721Google Scholar
  29. de Maagd R, Rao A, Mulders H, Leentje G, Loosdrecht M, Wijffeelman C, Lugtenberg B (1989) Isolation and characterization of mutants of Rhizobium leguminosarum bv. viciae 248 with altered lipopolysaccharides: possible role of surface charge or hydrophobicity in bacterial release from the infection thread. J Bacteriol 171:1143–1150PubMedGoogle Scholar
  30. de Rijke E, Out P, Niessen WM, Ariese F, Gooijer C, Brickman UA (2006) Analytical separation and detection methods for flavonoids. J Chromatogr A 112:31–63Google Scholar
  31. Derylo M, Skorupska A (1993) Enhancement of symbiotic nitrogen fixation by vitamin secreting fluorescent Pseudomonas. Plant Sci 154:211–217Google Scholar
  32. Deshwal V, Pandey P, Kang SC, Maheshwari DK (2003) Rhizobia as biological control agents against soil borne plant pathogens. Indian J Exp Biol 41:1160–1164PubMedGoogle Scholar
  33. Doura CE, Xenoulis AC, Paradellis T (1984) Salinity tolerance of a Rhizobium meliloti strain isolated from salt affected soils. Folia Microbiol Prague 29:316–324Google Scholar
  34. Dowling DN, Broughton WJ (1986) Competition for nodulation of legumes. Annu Rev Microbiol 40:131–157PubMedGoogle Scholar
  35. Fisher DJ, Hayes AL, Jones CA (1978) Effects of some surfactant fungicides on Rhizobium trifolii and its symbiotic relationship with white clover. Ann Appl Biol 90:73–84Google Scholar
  36. Fuhrmann J, Davey CB, Wollum AG (1986) Desiccation tolerance in clover rhizobia in sterile soils. Soil Sci Soc Am J 50:639–644Google Scholar
  37. Gerosa-Ramos ML, Parsons R, Sprent JI, James EK (2003) Effect of water stress on nitrogen fixation and nodule structure of common bean. Pesq Agropec Bras 38:339–347Google Scholar
  38. Georgiev GI, Atkins CA (1993) Effects of salinity on N2 fixation, nitrogen metabolism and export and diffusive conductance of cowpea nodules. Symbiosis 15:239–255Google Scholar
  39. Gibson AH (1969) Physical environment and symbiotic nitrogen fixation. Nitrogen retention within the nodules of Trifolium subterraneum L. Aust J Biol Sci 22:829–838Google Scholar
  40. Gillberg B (1971) On the effects of some pesticides on Rhizobium and isolation of pesticide-resistant mutants. Arch Microbiol 75:203–208Google Scholar
  41. Golebiowska J, Kaszubiak H, Pajewska M (1967) Adaptation of Rhizobium to thiram. Acta Microbiol Pol 16:153–158PubMedGoogle Scholar
  42. Graham PH (1992) Stress tolerance in Rhizobium and Bradyrhizobium and nodulation under adverse soil conditions. Can J Microbiol 38:475–484Google Scholar
  43. Graham PH, Ocampo G, Ruiz LD, Duque A (1980) Survival of Rhizobium phaseoli in contact with chemical seed protectans. Agron J 72:625–627Google Scholar
  44. Guene NFD, Diouf A, Gueye M (2003) Nodulation and nitrogen fixation of field grown common bean (Phaseolus vulgaris) as influenced by fungicide seed treatment. Afr J Biotechnol 2:198–201Google Scholar
  45. Hafeez FY, Shah NH, Malik KA (2000) Field evaluation of lentil cultivars inoculated with R. leguminosarum bv. viciae strains for nitrogen fixation using nitrogen-15 isotope dilution. Biol Fertil Soils 31:65–69Google Scholar
  46. Hagedorn C, Caldwell BA (1981) Characterization of diverse Rhizobium trifolii isolates. Soil Sci Soc Am J 45:1513–1516Google Scholar
  47. Hamdi Y (1970) Soil water tension and the movement of rhizobia. Soil Biol Biochem 3:121–126Google Scholar
  48. Hernández-Jiménez MJ, Lucas MM, de Felipe MR (2002) Antioxidant defense and damage in senescing lupin nodules. Plant Physiol Biochem 40:645–657Google Scholar
  49. Howieson JG, Robson AD, Abbott LK (1992) Acid-tolerant species of Medicago produce root exudates at low pH wich induce the expression of nodulation genes in Rhizobium meliloti. Aust J Plant Physiol 19:287–296Google Scholar
  50. Huang CY, Boyer JS, Vanderhoef LN (1975) Limitation of acetylene reduction (nitrogen fixation) by photosynthesis in soybean having low water potentials. Plant Physiol 56:228–232PubMedGoogle Scholar
  51. Hungria M, Vargas MA (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crop Res 65:151–164Google Scholar
  52. Hungria MA, Joseph CM, Phillips DA (1991) Rhizobium nod-gene inducers exuded naturally from roots of common bean (Phaseolus vulgaris L.). Plant Physiol 97:759–764PubMedGoogle Scholar
  53. Irigoyen JJ, Emerich DW, Sánchez-Díaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant 84:55–60Google Scholar
  54. Jakubisiak B, Golebiowska J (1963) Influence of fungicides on Rhizobium. Acta Microbiol Pol 12:196–202PubMedGoogle Scholar
  55. Karanja NK, Wood M (1988) Selecting Rhizobium phaseoli strains for use with beans (Phaseolus vulgaris L.) in Kenya. Tolerance of high temperature and antibiotic resistance. Plant Soil 112:15–22Google Scholar
  56. Khadir AH, Sinhg RC, Peterson JF (1984) Effect of white clover mosaic virus infection on various processes relevant to N2 fixation in red clover. Can J Bot 62:38–42Google Scholar
  57. Kekskes M, Vincent J (1969) The effect of some fungicides on Rhizobium leguminosarum. I. Laboratory Investigations. Agrokem Talajt 18:57–70Google Scholar
  58. Ko MP, Barker KR, Huang JS (1984) Nodulation of soybeans as affected by half root infection with Heterodera glycine. J Nematol 16:97–105PubMedGoogle Scholar
  59. Kyes-Boahen S, Slinkard AE, Walley FL (2001) Rhizobial survival and nodulation of chickpea as influenced by fungicide seed treatment. Can J Microbiol 47:585–589Google Scholar
  60. Lee KD (2009) The low root zone temperature effects on nitrogen fixation, growth, and antioxidant responses of lentil inoculated whit Rhizobium leguminosarum. J Korean Soc Appl Biol Chem 52:688–693Google Scholar
  61. Macció D, Fabra A, Castro S (2002) Acidity and calcium interaction affect the growth of Bradyrhizobium sp. and the attachment to peanut roots. Soil Biol Biochem 34:201–208Google Scholar
  62. Mallik MAB, Tesfai K (1985) Pesticidad effect on soybean rhizobia symbiosis. Plant Soil 85:33–41Google Scholar
  63. Martensson AM (1992) Effects of agrochemicals and heavy metals on fast-growing Rhizobia and their symbiosis with small-seeded legumes. Soil Biol Biochem 24:435–445Google Scholar
  64. Michiels J, Verreth C, Vanderleyden J (1994) Effects of temperature stress on bean nodulating Rhizobium strains. Appl Environ Microbiol 60:1206–1212PubMedGoogle Scholar
  65. Miransari M, Smith DL (2007) Overcoming the stressful effects of salinity and acidity on soybean [Glycine max (L.) Merr] nodulation and yields using signal molecule genistein under field conditions. J Plant Nutr 30:1967–1992Google Scholar
  66. Miransari M, Smith DL (2009) Alleviating salt stress on soybean [Glycine max (L.) Merr] – Bradyrhizobium japonicum symbiosis using signal molecule genistein. Eur J Soil Biol 45:146–152Google Scholar
  67. Mohammad RM, Akhavan-Kharazian M, Campbell WF, Rumbaugh MD (1991) Identification of salt and drought tolerant Rhizobium meliloti L. strains. Plant Soil 134:271–276Google Scholar
  68. Munns DN, Keyser HH, Fogle VW, Hohenberg JS, Righetti TL, Lauter DL, Zaruog MG, Clarkin KL, Whitacre KW (1979) Tolerance of soil acidity in symbiosis of mung bean with rhizobia. Agron J 71:256–260Google Scholar
  69. Naeem F, Malik KA, Hafeez FY (2008) Pisum sativumRhizobium interactions under different environmental stresses. Pak J Bot 40:2601–2612Google Scholar
  70. Naya L, Ladrera R, Ramos J, González E, Arrese-Igor C, Minchin FR, Becana M (2007) The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144:1104–1114PubMedGoogle Scholar
  71. Nuti M, Casella S, Pasti M (1984) Evaluation of rhizobia genetically engineered for pesticide resistance. In: Veeger H, Newton WE (eds) Advances in nitrogen fixation research. Nijhoff, Noordwijkerhout, p 720Google Scholar
  72. O’Hara GW, Goss TJ, Dilworth MJ, Glenn AR (1989) Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl Environ Microbiol 55:1870–1876PubMedGoogle Scholar
  73. Orchard VA, Cook FG (1983) Relation between soil respiration and soil moisture. Soil Biol Biochem 15:447–453Google Scholar
  74. Parker MB, Dowler CC (1976) Effects of nitrogen with trifluralin and vernolate on soybeans. Weed Sci 24:131–133Google Scholar
  75. Pena-Cabrales JJ, Castellanos JZ (1993) Effect of water stress on N2 fixation and grain yield of Phaseolus vulgaris. Plant Soil 152:151–155Google Scholar
  76. Pimratch S, Joglay S, Vorasoot N, Toomsan B, Patanothai A, Holbroock CC (2008) Relationship between biomass production and nitrogen fixation under drought stress conditions in peanut genotypes with different levels of drought resistance. J Agron Crop Sci 194:15–25Google Scholar
  77. Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143Google Scholar
  78. Rai R (1983) The salt tolerance of Rhizobium leguminosarum strains and lentil (Lens esculenta) genotypes and the effect of salinity on aspects of symbiotic nitrogen fixation. J Agric Sci 100:81–86Google Scholar
  79. Ramírez C, Alexander M (1980) Evidence suggesting protozoan predation on Rhizobium associated with germinating seeds and in the rhizosphere of beans (Phaseolus vulgaris L). Appl Environ Microbiol 40:492–499PubMedGoogle Scholar
  80. Relic B, Perret X, Estrada-García MT, Kopcinska J, Golinowski W, Krishnan HB, Pueppke SG, Broughton WJ (1994) Nod factors of Rhizobium are a key to the legume door. Mol Microbiol 13:171–178PubMedGoogle Scholar
  81. Rennie RJ, Dubetz S (1984) Effect of fungicides and herbicides on nodulation and N2 fixation in soybean fields lacking indigenous Rhizobium japonicum. Agron J 76:451–454Google Scholar
  82. Rosas SB, Carranza M (1987) The action of pesticides on microorganisms. Toxic Assess Int Quart 2:293–303Google Scholar
  83. Rosas SB, Palacios S, Correa NS (1996) Growth and nodulation of Cyamopsis tetragonoloba L (guar) under conditions of salinity. Int J Exp Bot 58:107–114Google Scholar
  84. Roughley RJ (1970) The influence of root temperature, Rhizobium strain and host selection on the structure and nitrogen fixing efficiency of the root nodules of Trifolium subterraneum. Ann Bot 34:631–646Google Scholar
  85. Ruiz Sáinz J, Beringer J, Gutiérrez Navarro A (1984) Effect of the fungicide captafol on the survival and symbiotic properties of Rhizobium trifolii. J Appl Bacteriol 57:361–367Google Scholar
  86. Ruiz Sáinz J, Bellogin R, Jiménez Díaz R, Gutiérrez Navarro A, Pérez Silva J (1986) Cysteine and toxicity of the fungicide captan and captafol on Rhizobium. Microbios 46:71–86Google Scholar
  87. Saraf M, Khandelwal A, Sawhney R, Maheshwari DK (1994) Effect of carbyryl and 2,4 -D on growth, nitrogenase and uptake hydrogenase activity in agar culture and root nodules formed by Bradyrhizobium japonicum. Microbiol Res 149:401–406Google Scholar
  88. Serraj R, Drevon JJ (1998) Effects of salinity and nitrogen source on growth and nitrogen fixation in alfalfa. J Plant Nutr 21:1805–1818Google Scholar
  89. Serraj R, Sinclair TR, Purcell LA (1999) Symbiotic N2 fixation response to drought. J Exp Bot 331:143–155Google Scholar
  90. Singh CS, Lakshmi-Kumari M, Biswas A, Subba Rao NS (1973) Effect of carbonate and bicarbonate of sodium on growth of rhizobia and nodulation in lucerne (Medicago sativa L). Indian J Microbiol 13:125–128Google Scholar
  91. Soria RS, Correa NS, Rosas SB (1996) Effect of water stress on the Guar-Bradyrhizobium system using PEG 6000. Phyton Int J Exp Bot 58:97–106Google Scholar
  92. Soussi M, Ocaña A, Lluch C (1998) Effect of salt stress on growth, photosynthesis and nitrogen fixation in chickpea (Cicer arietinum L.). J Exp Bot 325:1329–1337Google Scholar
  93. Stovold GE, Evans J (2006) Fungicide seed dressings: Their effects on emergence of soybean and nodulation of pea and soybean. Aust J Exp Agric 20:497–503Google Scholar
  94. Taylor RW, Williams ML, Sistani KR (1991) Nitrogen fixation by soybean-Bradyrhizobium combinations under acidity, low P and high Al stresses. Plant Soil 131:293–300Google Scholar
  95. Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–6Google Scholar
  96. Truchet G, Roche P, Lerouge P, Vasse J, Caumt S, de Billy F, Promé J, Denarié J (1991) Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351:670–673Google Scholar
  97. Tu CM (1980) Effect of fungicides on growth of Rhizobium japonicum in vitro. Bull Environ Contam Toxicol 25:364–368PubMedGoogle Scholar
  98. Tu JC (1978) Protection of soybean from severe Phytophthora root rot by Rhizobium. Physiol Plant Pathol 12:233–240Google Scholar
  99. Tu JC (1981) Effect of salinity on Rhizobium root hair interaction, nodulation and growth of soybean. Can J Plant Sci 61:231–239Google Scholar
  100. van Rhijn P, Vanderleyden J (1995) The Rhizobium- plant symbiosis. Microbiol Mol Biol Rev 59:124–142Google Scholar
  101. Vincent JM (1962) Influence of calcium and magnesium on the growth of Rhizobium. J Gen Microbiol 28:653–663PubMedGoogle Scholar
  102. Vriezen JAC, de Bruijn FJ, Nüsslein K (2007) Responses of rhizobia to desiccation in relation to osmótica stress, oxygen and temperature. Appl Environ Microbiol 73:3451–3459PubMedGoogle Scholar
  103. Wadisirisuk P, Danio SK, Hardarian G, Bowen GD (1989) Influence of Bradyrhizobium japonicum location and movement on nodulation and nitrogen fixation in soybean. Appl Environ Microbiol 35:1711–1716Google Scholar
  104. Weisz PR, Denison RF, Sinclair TR (1985) Response to drought stress of nitrogen fixation (acetylene reduction) rates by field-grown soybean. Plant Physiol 78:525–530PubMedGoogle Scholar
  105. Wilson KG, Stinner RE (1984) A potential influence of Rhizobium activity on the availability of nitrogen to legume herbivores. Oecologia 61:337–345Google Scholar
  106. Wolfson JL (1987) Impact on Rhizobium nodules of Sitona hispidulus, the clover root curculio. Entomol Exp Appl 43:237–243Google Scholar
  107. Worrall VS, Roughley RJ (1976) The effect of moisture stress on infection of Trifolium subterraneum L. by Rhizobium trifolii. Dang J Exp Bot 27:1233–1241Google Scholar
  108. Wright DA, Killham K, Glover LA, Prosser JI (1993) The effect of location in soil on protozoal grazing of a genetically modified bacterial inoculum. Geoderma 56:633–640Google Scholar
  109. Wrobel T (1963) Influence of fungicides on symbiosis of Rhizobium with pea and lupine. Acta Microbiol Pol 12:203–207PubMedGoogle Scholar
  110. Young JPW, Crossman LC, Johnston AWB, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson ARJ, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher CI, Arrowsmith C, Cherevach I, Chillingworth T, Clarke C, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:1–20Google Scholar
  111. Zablotowicz RM, Eskew DL, Focht DD (1978) Denitrification in Rhizobium. Can J Microbiol 24:757–776PubMedGoogle Scholar
  112. Zhang F, Lynch DH, Smith DL (1995) Impact of low root temperatures in soybean (Glycine max. L. Merr.) on nodulation and nitrogen fixation. Environ Exp Bot 35:279–285Google Scholar
  113. Zahran HH (1999) Rhizobium–legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989PubMedGoogle Scholar
  114. Zahran HH, Sprent JI (1986) Effects of sodium chloride and polyethylene glycol on root hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta 167:303–309Google Scholar
  115. Zahran HH, Rasanen LA, Karsisto M, Lindstrom K (1994) Alterations of lipopolysaccharide and protein profiles in SDS-PAGE of rhizobia by osmotic and heat stress. World J Microbiol Biotechnol 10:100–105Google Scholar
  116. Zheng C, Jiang D, Liu F, Dai T, Jing Q, Cao W (2009) Effects of salt and water-logging stresses and their combination of leaf photosynthesis, chloroplast ATP synthesis and antioxidant capacity in wheat. Plant Sci 176:575–582Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Javier A. Andrés
    • 1
    • 2
  • Marisa Rovera
    • 1
  • Lorena B. Guiñazú
    • 1
  • Nicolás A. Pastor
    • 1
  • Susana B. Rosas
    • 1
  1. 1.Laboratorio de Interacción Microorganismo – PlantaUniversidad Nacional de Río CuartoRío CuartoArgentina
  2. 2.Laboratorio de Microbiología AgrícolaUniversidad Nacional de Río CuartoRío CuartoArgentina

Personalised recommendations