Diagnostic Imaging of the Thyroid and Radioiodine Therapy

  • Walter Wiesner
  • Hermann Engel
  • Wolfgang Steinbrich
  • Egbert U. Nitzsche
  • Jan Mueller-Brand
  • Tilo Niemann
  • Georg M. Bongartz
Chapter

Abstract

According to its superficial anatomic location, the thyroid gland may easily be assessed by sonography. Linear transducers with a width of 7.5–9 cm and frequencies of around 10 MHz are used. Sonography of the thyroid gland should also always be combined with a sonography of the surrounding soft tissues and of the cervical vessels. It allows the exact measurement of the thyroid volume and assessment of the parenchymal texture of the thyroid gland with identification of diffuse or focal abnormalities of the gland itself and of potential abnormalities within the surrounding structures.

Compared to other imaging modalities, thyroid sonography offers the best spatial resolution. Lateral resolution is 0.5–1 mm, and this is also valid for tiny calcifications. For solid or cystic lesions, the detection levels are 2 mm. By using the combination with colour Doppler sonography, additional information may be achieved regarding the local perfusion in focal or diffuse abnormalities.

Keywords

Thyroid Cancer Thyroid Gland Thyroid Nodule Papillary Carcinoma Multinodular Goitre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gritzmann N, Koischwitz D, Rettenbacher T (2000) Sonography of the thyroid and parathyroid glands. Radiol Clin North Am 38:1131–1145PubMedCrossRefGoogle Scholar
  2. 2.
    Hegedus L (2001) Thyroid ultrasound. Endocrinol Metab Clin North Am 30:339–360PubMedCrossRefGoogle Scholar
  3. 3.
    Solbiati L, Osti V, Cova L, Tonolini M (2001) Ultrasound of thyroid, parathyroid glands and neck lymph nodes. Eur Radiol 11:2411–2424PubMedCrossRefGoogle Scholar
  4. 4.
    Baskin MD, Face HJ (1997) Thyroid ultrasonography: a review. Endocr Pract 3:153–157PubMedGoogle Scholar
  5. 5.
    Baldini M, Castagnone D, Rivolta D et al (1997) Thyroid vascularisation by color Doppler ultrasonography in Graves disease. Changes related to different phases and to long-term outcome of the disease. Thyroid 7:823–828PubMedCrossRefGoogle Scholar
  6. 6.
    Birchall IW, Chow CC, Metreweli C (1990) Ultrasound appearances of de Quervain’s thyroiditis. Clin Radiol 41:57–59PubMedCrossRefGoogle Scholar
  7. 7.
    Sostre S, Reyes MM (1991) Sonographic diagnosis and grading of Hashimoto’s thyroiditis. J Endocrinol Invest 14:115–121PubMedGoogle Scholar
  8. 8.
    Papi G, LiVolsi VA (2004) Current concepts on Riedel thyroiditis. Am J Clin Pathol 121(Suppl):50–63Google Scholar
  9. 9.
    Kobayashi T, Naka W, Harada T, Nishikawa T (1995) Association of the acral type of pustular psoriasis, Sjogren’s syndrome, systemic lupus erythematosus, and Hashimoto’s thyroiditis. J Dermatol 22:125–128PubMedGoogle Scholar
  10. 10.
    Tutuncu NB, Erbas T, Bayraktar M, Gedik O (2000) Multifocal idiopathic fibrosclerosis manifesting with Riedel’s thyroiditis. Endocr Pract 6:447–449PubMedGoogle Scholar
  11. 11.
    Wiesner W, Engel H, von Schulthess GK, Krestin GP, Bicik I (1999) FDG PET-negative liver metastases of a malignant melanoma and FDG PET-positive Hürthle cell tumour of the thyroid. Eur Radiol 9:975–978PubMedCrossRefGoogle Scholar
  12. 12.
    Gertner ME, Kebebew E (2004) Multiple endocrine neoplasia type 2. Curr Treat Options Oncol 5:315–325PubMedCrossRefGoogle Scholar
  13. 13.
    Michelow PM, Leiman G (1995) Metastases to the thyroid gland: diagnosis by aspiration cytology. Diagn Cytopathol 13:209–213PubMedCrossRefGoogle Scholar
  14. 14.
    do Rosario PW, Fagundes TA, Maia FF, Franco AC, Figueiredo MB, Purisch S (2004) Sonography in the diagnosis of cervical recurrence in patients with differentiated thyroid carcinoma. J Ultrasound Med 23:915–920PubMedGoogle Scholar
  15. 15.
    Rodriguez JM, Reus M, Moreno A, Martinez M, Soria T, Carrasco L, Parrilla P (1997) High-resolution ultrasound associated with aspiration biopsy in the follow-up of patients with differentiated thyroid cancer. Otolaryngol Head Neck Surg 117:694–697PubMedCrossRefGoogle Scholar
  16. 16.
    Simeone JF, Daniels GH, Hall DA, McCarthy K, Kopans DB, Butch RJ, Mueller PR, Stark DD, Ferrucci JT Jr, Wang CA (1987) Sonography in the follow-up of 100 patients with thyroid carcinoma. AJR Am J Roentgenol 148:45–49PubMedGoogle Scholar
  17. 17.
    Yoon DY, Chang SK, Choi CS et al (2008) The prevalence and significance of incidental thyroid nodules identified on computed tomography. J Comput Assist Tomogr 32:810–815PubMedCrossRefGoogle Scholar
  18. 18.
    Kabala JE (2008) Computed tomography and magnetic resonance imaging in diseases of the thyroid and parathyroid. Eur J Radiol 66:480–492PubMedCrossRefGoogle Scholar
  19. 19.
    Fricke E, Fricke H, Esdorn E et al (2004) Scintigraphy for risk stratification of iodine-induced thyrotoxicosis in patients receiving contrast agent for coronary angiography: a prospective study of patients with low thyrotropin. J Clin Endocrinol Metab 89:6092–6096PubMedCrossRefGoogle Scholar
  20. 20.
    Conn JJ, Sebastian MJ, Deam D, Tam M, Martin FI (1996) A prospective study of the effect of nonionic contrast media on thyroid function. Thyroid 6:107–110PubMedCrossRefGoogle Scholar
  21. 21.
    Fassbender WJ, Schluter S, Stracke H, Bretzel RG, Waas W, Tillmanns H (2001) Thyroid function after iodine-containing contrast agent administration in coronary angiography: a prospective study of euthyroid patients. Z Kardiol 90:751–759PubMedCrossRefGoogle Scholar
  22. 22.
    Katelaris CH (2009) ‘Iodine allergy’ label is misleading. Aust Prescr 32:125–128Google Scholar
  23. 23.
    van der Molen AJ, Thomsen HS, Morcos SK (2004) Effect of iodinated contrast media on thyroid function in adults. Eur Radiol 14:902–907PubMedCrossRefGoogle Scholar
  24. 24.
    National Research Council; Committee to Assess Health Risks from Exposure to Low Level of Ionizing Radiation (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. National Academies Press, WashingtonGoogle Scholar
  25. 25.
    Leswick DA, Hunt MM, Webster ST, Fladeland DA (2008) Thyroid shields versus z-axis automatic tube current modulation for dose reduction at neck CT. Radiology 249:572–580PubMedCrossRefGoogle Scholar
  26. 26.
    Vollmar SV, Kalender WA (2008) Reduction of dose to the female breast in thoracic CT: a comparison of standard-protocol, bismuth-shielded, partial and tube-current-modulated CT examinations. Eur Radiol 18:1674–1682PubMedCrossRefGoogle Scholar
  27. 27.
    Shetty SK, Maher MM, Hahn PF, Halpern EF, Aquino SL (2006) Significance of incidental thyroid lesions detected on CT: correlation among CT, sonography, and pathology. AJR Am J Roentgenol 187:1349–1356PubMedCrossRefGoogle Scholar
  28. 28.
    Lin E, Garg KD, Escott E, Alexander D, Bleicher AG (2008) Thyroid diseases and lesions. Practical differential diagnoses for CT and MRI. Thieme, New York, pp 94–96Google Scholar
  29. 29.
    Holden A (1995) The role of colour and duplex Doppler ultrasound in the assessment of thyroid nodules. Australas Radiol 39:343–349PubMedCrossRefGoogle Scholar
  30. 30.
    Frates MC, Benson CB, Doubilet PM, Cibas ES, Marqusee E (2003) Can color Doppler sonography aid in the prediction of malignancy of thyroid nodules? J Ultrasound Med 22:127–131PubMedGoogle Scholar
  31. 31.
    Aytug S, Sievert R, Ross FA (2002) Occult papillary thyroid carcinoma presenting as extrathyroidal solitary neck cyst. QJM 95:186–188PubMedCrossRefGoogle Scholar
  32. 32.
    Catherine Westbrook (1999) Thyroid and parathyroid glands. Handbook of MRI technique, 2nd edn. Blackwell Science, Oxford, pp 110–113Google Scholar
  33. 33.
    Genden EM, Brett EM (2007) Carcinoma of the thyroid. Head and neck cancer: an evidence-based team approach. Thieme, Stuttgart, pp 90–104Google Scholar
  34. 34.
    Weber AL, Randolph G, Aksoy FG (2000) The thyroid and parathyroid glands. CT and MR imaging and correlation with pathology and clinical findings. Radiol Clin North Am 38:1105–1129PubMedCrossRefGoogle Scholar
  35. 35.
    Hundahl SA, Fleming ID, Fremgen AM, Menck HR (1998) A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995. Cancer 83:2638–2648PubMedCrossRefGoogle Scholar
  36. 36.
    Hricak H, Husband J, Panicek DM (2007) Carcinoma of the thyroid gland. Oncologic imaging: essentials of reporting common cancers. Saunders Elsevier, Philadelphia, pp 233–243Google Scholar
  37. 37.
    Kabala JE (2006) CT and MRI in thyroid cancer. Practical management of thyroid cancer: a multidisciplinary approach. Springer, London, pp 359–368Google Scholar
  38. 38.
    Patel SG, Shah JP (2005) TNM staging of cancers of the head and neck: striving for uniformity among diversity. CA Cancer J Clin 55:242–258PubMedCrossRefGoogle Scholar
  39. 39.
    Yousem DM, Som PM, Hackney DB, Schwaibold F, Hendrix RA (1992) Central nodal necrosis and extracapsular neoplastic spread in cervical lymph nodes: MR imaging versus CT. Radiology 182:753–759PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Walter Wiesner
    • 1
  • Hermann Engel
    • 2
  • Wolfgang Steinbrich
    • 3
  • Egbert U. Nitzsche
    • 4
  • Jan Mueller-Brand
    • 5
  • Tilo Niemann
    • 6
  • Georg M. Bongartz
    • 3
  1. 1.Radiologie Nordost AG, Diagnosezentrum RheintalHeerbruggSwitzerland
  2. 2.Center for Thyroid Diseases, Department of Endocirnology, Spital ZollikerbergZollikerbergSwitzerland
  3. 3.Department of Radiology and Nuclear MedicineUniversity Hospital BaselBaselSwitzerland
  4. 4.Department of Nuclear Medicine and PET CenterCantonal Hospital AarauAarauSwitzerland
  5. 5.Department of Nuclear MedicineUniversity Hospital BaselBaselSwitzerland
  6. 6.Department of RadiologyUniversity Hospital BaselBaselSwitzerland

Personalised recommendations