Abstract

Answers to queries in possibly inconsistent databases may not have integrity. We formalize ‘has integrity’ on the basis of a definition of ‘causes’. A cause of an answer is a minimal excerpt of the database that explains why the answer has been given. An answer has integrity if one of its causes does not overlap with any cause of integrity violation.

Keywords

Logic Program Belief Revision Conjunctive Query Explanation Base Minimal Repair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent databases. In: Proc. 18th PODS, pp. 68–79. ACM Press, New York (1999)Google Scholar
  2. 2.
    Bertossi, L., Hunter, A., Schaub, T.: Introduction to inconsistency tolerance. In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 1–14. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Chakravarthy, S., Grant, J., Minker, J.: Logic-based approach to semantic query optimization. ACM TODS 15(2), 162–207 (1990)CrossRefGoogle Scholar
  4. 4.
    Chomicki, J.: Consistent Query Answering: Five Easy Pieces. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 1–17. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Clark, K.: Negation as Failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press, New York (1978)CrossRefGoogle Scholar
  6. 6.
    Decker, H.: Toward a Uniform Cause-Based Approach to Inconsistency-Tolerant Database Semantics. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6427, pp. 983–998. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Decker, H.: Basic causes for the Inconsistency Tolerance of Query Answering and Integrity Checking. In: Proc. 21st DEXA Workshop, pp. 318–322. IEEE CPS, Los Alamitos (2010)Google Scholar
  8. 8.
    Decker, H.: Some Notes on Knowledge Assimilation in Deductive Databases. In: Kifer, M., Voronkov, A., Freitag, B., Decker, H. (eds.) Dagstuhl Seminar 1997, DYNAMICS 1997, and ILPS-WS 1997. LNCS, vol. 1472, pp. 249–286. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Decker, H.: On Explanations in Deductive Databases. In: Proc. 3rd Workshop on Foundations of Models and Languages for Data and Objects, vol. 91/3, pp. 173–185. Inst.f.Informatik, Tech.Univ.Clausthal, Informatik-Bericht (1991)Google Scholar
  10. 10.
    Decker, H., Martinenghi, D.: Inconsistency-tolerant Integrity Checking. Transactions of Knowledge and Data Engineering 23(2), 218–234 (2011)CrossRefGoogle Scholar
  11. 11.
    Decker, H., Martinenghi, D.: Modeling, Measuring and Monitoring the Quality of Information. In: Heuser, C.A., Pernul, G. (eds.) ER 2009. LNCS, vol. 5833, pp. 212–221. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Denecker, M., Kakas, A.: Abduction in Logic Programming. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2407, pp. 402–436. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Dung, P., Kowalski, R., Toni, F.: Dialectic proof procedures for assumption-based admissible argumentation. Artif. Intell. 170(2), 114–159 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Fung, T., Kowalski, R.: The IFF proof procedure for abductive logic programming. J. Logic Programming 33(2), 151–165 (1997)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hinrichs, T., Kao, J., Genesereth, M.: Inconsistency-Tolerant Reasoning with Classical Logic and Large Databases. In: Proc. 8th SARA, pp. 105–112. AAAI Press, Menlo Park (2009)Google Scholar
  16. 16.
    Kakas, A., Kowalski, R., Toni, F.: The role of abduction in logic programming. In: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 5, pp. 235–324. Oxford University Press, Oxford (1998)Google Scholar
  17. 17.
    Kakas, A., Mancarella, P.: Database Updates through Abduction. In: Proc. 16th VLDB, pp. 650–661. Morgan Kaufmann, San Francisco (1990)Google Scholar
  18. 18.
    Kowalski, R.: Predicate Logic as a Programming Language. In: Proc. 6th IFIP, pp. 569–574. North-Holland, Amsterdam (1974)Google Scholar
  19. 19.
    Liebowitz, J.: Handbook of Applied Expert Systems. CRC Press, Boca Raton (1998)MATHGoogle Scholar
  20. 20.
    Lifschitz, V.: What is Answer Set Computing? In: Proc. 23rd AAAI, pp. 1594–1597 (2008)Google Scholar
  21. 21.
    Lloyd, J.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)CrossRefMATHGoogle Scholar
  22. 22.
    Mancarella, P., Terreni, G., Sadri, F., Toni, F., Endriss, U.: The CIFF proof procedure for abductive logic programming with constraints: Theory, implementation and experiments. TPLP 9(6), 691–750 (2009)MathSciNetMATHGoogle Scholar
  23. 23.
    Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 119–140. Plenum Press, New York (1978)Google Scholar
  24. 24.
    Toni, F., Kowalski, R.: Reduction of abductive logic programs to normal logic programs. In: Proc. 12th ICLP, pp. 367–381. MIT Press, Cambridge (1995)Google Scholar
  25. 25.
    Williams, M.-A.: Applications of Belief Revision. In: Kifer, M., Voronkov, A., Freitag, B., Decker, H. (eds.) Dagstuhl Seminar 1997, DYNAMICS 1997, and ILPS-WS 1997. LNCS, vol. 1472, pp. 287–316. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hendrik Decker
    • 1
  1. 1.Instituto Tecnológico de InformáticaUniversidad Politécnica de ValenciaSpain

Personalised recommendations