Internal Waves in Lakes: Generation, Transformation, Meromixis – An Attempt at a Historical Perspective

Chapter
Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM)

Abstract

We review experimental and theoretical studies of linear and nonlinear internal fluid waves and argue that their discovery is based on a systematic development of thermometry from the early reversing thermometers to the moored thermistor chains. The latter (paired with electric conductivity measurements) allowed development of isotherm (isopycnal) time series and made the observation of large amplitude internal waves possible. Such measurements (particularly in the laboratory) made identification of solitary waves possible and gave rise to the emergence of very active studies of the mathematical description of the motion of internal waves in terms of propagating time-dependent interface motions of density interfaces or isopycnal surfaces. As long as the waves remain stable, i.e., do not break, they can mathematically be described for two-layer fluids by the Korteweg-de Vries equation and its generalization. When the waves break, the turbulent analogs of the Navier–Stokes equations must be used with appropriate closure conditions to adequately capture their transformation and flux of matter to depth, which is commonly known as meromixis.

Keywords

Solitary Wave Internal Wave Nonlinear Wave Solitary Wave Solution Equivalent Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ablowitz M and Segur H (1981) Solitons and the inverse scattering transform Soc. Industrial and Applied Mathematics, p 425CrossRefGoogle Scholar
  2. André, Father Louis, quoted and translated in Relation of 1671–72, and in Relation of 1676–77; Thwaites RG: The Jesuit Relations and Other Documents, 60, Burrow, Cleveland, Ohio 1671, 1676Google Scholar
  3. Antenucci JP, Imberger J and Saggio A (2000) Seasonal evolution of the basin scale internal wave field in a large stratified lake. Limnol Oceanogr 45(7):1621–1638Google Scholar
  4. Antenucci JP, Imberger J (2001) On internal waves near the high-frequency limit in an enclosed basin. J Geophys Res106:22465–22474CrossRefGoogle Scholar
  5. Antenucci JP and Imberger J (2001) Energetics of long internal gravity waves in large lakes. Limnol Oceanogr 46(7):1760–1773Google Scholar
  6. Appt J, Imberger J and Kobus H (2004) Basin-scale motion in stratified Upper Lake Constance. Limnol Oceanogr49(4):919–933Google Scholar
  7. Bäuerle E (1981) Die Eigenschwingungen abgeschlossener, zweigeschichteter Wasserbecken bei variabler Bodentopographie. Bericht aus dem Institut für Meereskunde, Christian Albrechts UniversitätGoogle Scholar
  8. Bäuerle E (1985) Internal free oscillations in the Lake of Geneva. Annales Geophysicae 3:199–206Google Scholar
  9. Bäuerle E (1994) Transverse baroclinic oscillations in Lake Überlingen. Aquatic Sciences 56 (2): 145–149Google Scholar
  10. Bèche HT, de la (1819) Sur la profondeur et la temperature du Lac de Genève. Bibl Univ Sci Arts, GenèveGoogle Scholar
  11. Benjamin, TB (1966) Internal waves of finite amplitude and permanent form. J Fluid Mech 25: 241–270CrossRefGoogle Scholar
  12. Benjamin, TB (1967) Internal waves of permanent form in fluids of great depth. J Fluid Mech 29: 559–592CrossRefGoogle Scholar
  13. Birge EA (1897) Plankton studies on Lake Mandota: II, The crustacea of the plankton from July 1894 to December 1896. Trans WisconsinAcad Sci Arts Lett, II, p 274Google Scholar
  14. Birge EA (1916) The work of the wind in warming a lake. Trans Wis Acad Sci Arts Lett18: 341, 429, 495, 508Google Scholar
  15. Birge EA and Juday C (1929) Transmission of solar radiation by the waters of inland lakes. Trans Wis Acad Sci Arts Lett24: p 509Google Scholar
  16. Boegman L, Imberger J, Ivey GN, Antenucci JP (2003) High-frequency internal waves in large stratified lakes. Limnol Oceanogr 48:895–919CrossRefGoogle Scholar
  17. Boegman L, Ivey GN, Imberger J (2005) The degeneration of internal waves in lakes with sloping topography. Limnol Oceanogr 50:1620–1637CrossRefGoogle Scholar
  18. Boussinesq J (1871a) Théorie de l’intumescence liquide, appelée onde solitaire ou de translation, se propegant dans un canal rectangulaire. C R Acad Sci Paris 72: 755–759Google Scholar
  19. Boussinesq J (1871b) Théorie génerale des mouvements qui sont propagés dans un canal rectangulaire horizontal. C R Acad Paris 73: 256–260Google Scholar
  20. Boussinesq J (1872) Théorie des ondes et des ramous qui se propagent le long d’un canal rectangulaire horizontal, en communicant au liquide continue dans ce canal des vitesses sensiblement pareilles de la surface au fond. J Math Pure Appl 17(2): 55–108Google Scholar
  21. Boussinesq J (1877) Essai sur la théorie des eaux courantes. Mém.présentés par divers Savants à L’Acad. Sci.Inst. France (series 2) 23: 1–680 (see also 24: 1–64)Google Scholar
  22. Boyce FM and Mortimer CH (1977) IFYGL temperature transects, Lake Ontario, 1972. Environment Canada, Tech Bull 100Google Scholar
  23. Caloi P (1954) Oscillationi libre del Lago di Garda. Arch Met Geophys Bioklim A7: p 434Google Scholar
  24. Charney JG (1955) Generation of oceanic currents by wind. J Mar Res 14: 477–498Google Scholar
  25. Chensky AG, Lovtsov SV, ParfenovYuV, Rastegin AE, Rubtzov VYu (1998) On the coastal-trapped waves in the southern area of Lake Baikal. Oceanic Fronts and Related Phenomena, Konstantin Fedorov Memorial Symposium. St.-Petersburg: RSHMU Publishers, 29–30Google Scholar
  26. Chrystal G (1905) On the hydrodynamical theory of seiches (with a biographical sketch). TransRoy Soc Edinburgh 41: p 599Google Scholar
  27. Chubarenko I Chubarenko B, Bäuerle E, Wang Y, and Hutter K (2003) Autumn Physical Limnological Experimental Campaign in the Island Mainau Littoral Zone of Lake Constance. J Limnol 62: 115–119CrossRefGoogle Scholar
  28. Church PE (1942) The annual temperature cycle of Lake Michigan, I. Cooling from late autumn to the terminal point, 1941–1942. Univ Chicago Inst Meteorol, Misc, Rept 4Google Scholar
  29. Church PE (1945) The annual temperature cycle of Lake Michigan, II Spring warming and summer stationary periods 1942 Cooling. Univ Chicago Inst Meteorol, Misc, Rept 18Google Scholar
  30. Davis RE and Acrivos, A (1967) Solitary internal waves in deep water. J Fluid Mech 29: 593–607CrossRefGoogle Scholar
  31. Defant A (1918) Neue Methode zur Ermittlung der Eigenschwingungen (seiches) von abgeschlossenen Wassermassen (See, Buchten, usw.).Ann Hydrogr, Berlin 46: p 78Google Scholar
  32. Defant F (1953) Theorie der Seiches des Michigansees und ihre Abwandlung durch Wirkung der Corioliskraft. Arch Met Geophys Bioklim, Vienna A6: p 218Google Scholar
  33. De Vries, G (1894) Bijdrage toto de kennis der lange goven. Doctoral Dissertation University of Amsterdam.Google Scholar
  34. Diebels S, Schuster B and Hutter K (1994) Nonlinear internal waves over variable topography. Geophys Astrophys Fluid Dyn 76: 165–192CrossRefGoogle Scholar
  35. Djordjevic VD and Redekopp LD (1978) The fission and disintegration of internal solitary waves moving over two-dimensional topography. J Phys Oceanogr 8: 1016–1024CrossRefGoogle Scholar
  36. Farmer DM (1978) Observations of long nonlinear internal waves in a lake. J Phys Oceanogr 8: 63–73CrossRefGoogle Scholar
  37. Farmer DM and Carmack EC (1981) Wind mixing and restratification in a lake near the temperature of maximum density. J Phys Oceanogr 11: p 1516Google Scholar
  38. Farmer DM and Smith JD (1978) Nonlinear internal waves in a fjord. In: Hydrodynamics of Estuaries and Fjords (JCJ Nihoul, ed), Elsevier: 465–493Google Scholar
  39. Filatov NN (1983) Dynamics of lakes. Leningrad, Gidrometeoizdat Press, 166 [In Russian]Google Scholar
  40. Filatov NN (1991) Hydrodynamics of Lakes. St.-Petersburg: Nauka Press, 191 [In Russian with English summary]Google Scholar
  41. Filatov NN, Beletsky DV, Zaitsev LV (1990) Variability of hydrophysical fields in Lake Onego. “Onego” experiment.Water Problems Department, Karelian Scientific Centre AS USSR, Petrozavodsk, 110 [In Russian]Google Scholar
  42. Filatov NN, Ryanzhin SV, Zaitsev LV (1981) Investigation of turbulence and Langmuir circulation in Lake Ladoga. J Great Lakes Res 7(1): 1–6Google Scholar
  43. Filonov AE, Thereshchenko, IE (1999) Thermal lenses and internal solitons in Chapla Lake, Mexico. Chin J Oceanol Limnol 17(4): 308–314Google Scholar
  44. Forel FA (1895) Lac Léman. Monographie Limnologique, 2, LausanneGoogle Scholar
  45. Gardiner CS (1967) Method for solving the Kortweg-de Vries equation. Phys Rev Lett 19: 1095–1097CrossRefGoogle Scholar
  46. Gargett AE (1976) Generation of Internal Waves in the Strait of Georgia, British Columbia. Deep Sea Res 23: 17–32Google Scholar
  47. Gear JA and Grimshaw R (1983) A second order theory for solitary waves in shallow fluids. Phys Fluids 26: 14–29CrossRefGoogle Scholar
  48. Geistbeck a (1885) Die Seen der deutschen Alpen. Mitt Ver Erdkunde, LeipzigGoogle Scholar
  49. Goldstein S (1929) Tidal motion in a rotating elliptic basin of constant depth. MonthlyNotes Royal Astronom Soc (Geophys Suppl) 2: 213–231Google Scholar
  50. Gomez-Giraldo A, Imberger J, Antenucci J, Yeates P (2008) Wind-shear-generated high-frequency internal waves as precursors to mixing in a stratified lake. Limnol Oceanogr 53: 354–367CrossRefGoogle Scholar
  51. Granin N (1984) Some results of internal wave measurements in Lake Baikal. In: Hydrology of Lake Baikal and other water bodies. Nauka, Novosibirsk: 67–71 [In Russian]Google Scholar
  52. Grimshaw R (1978) Long nonlinear internal waves in channels of arbitrary cross sections. J Fluid Mech 86: 415–431CrossRefGoogle Scholar
  53. Grimshaw R (1979) Slowly varying solitary waves I. Korteweg-de Vries equation. Proc Roy Soc, London A368: 359–375Google Scholar
  54. Grimshaw R (1981a) Evolution equations for long, nonlinear internal waves in stratified shear flows. Studies Appl Math 65: 159–188Google Scholar
  55. Grimshaw R (1981b) Slowly varying solitary waves in deep fluids. Proc Royal Soc London A376: 319–332Google Scholar
  56. Grimshaw R (1981c) A second order theory for solitary waves in deep fluids. Phys Fluids 24: 1611–1618CrossRefGoogle Scholar
  57. Grimshaw R (1983) Solitary waves in density stratified fluids. In: Nonlinear deformation waves. IUTAM Symposium, Tallin, 1982 (U Nighel and J Engelbrecht, eds), 431–447, Springer Verlag, Berlin etc.CrossRefGoogle Scholar
  58. Guo Y, Sveen JK, Davies PA, Grue J, Dong, P (2004) Modelling the motion of an internal solitary wave over a bottom ridge in a stratified fluid. Environ Fluid Mech4: 415–441Google Scholar
  59. Heaps NS (1961) Seiches in a narrow lake, uniformly stratified in three layers. Geophys Supp J Roy Astronom Soc London5: p 134Google Scholar
  60. Heaps N (1975) Resonant tidal co-oscillations in a narrow gulf. Arch Met Geophys Bioklim A24: p 361Google Scholar
  61. Heaps NS, Mortimer CH and Fee EJ (1982) Numerical models and observations of water motion in Green Bay, Lake Michigan. Phil Trans Roy Soc, London A306: p 371Google Scholar
  62. Helfrich K, Melville W (2006) Long nonlinear internal waves. Ann Rev Fluid Mech 38: 395–425CrossRefGoogle Scholar
  63. Hollan E (1974) Strömungsmessungen im Bodensee. Ber Arbeitsgem Wasserwerke Bodensee-Rhein, (AWBR) 6: p 111–187Google Scholar
  64. Horn W (1981) Zürichsee 1978: Physikalisch-limnologisches Messprogramm und Datensammlung. Internal Report Nr 50. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, Eidg Tech Hochschule, Zürich (unpublished)Google Scholar
  65. Horn W, Mortimer CH, Schwab D J (1986) Wind-induced internal seiches in Lake Zurich observed and modeled. Limnol Oceanogr 31(6): 1232–1254Google Scholar
  66. Horn DA, Imberger J, Ivey GN (2001) The degeneration of large-scale interfacial gravity waves in lakes. J Fluid Mech 434: 181–207CrossRefGoogle Scholar
  67. Horn DA, Imberger J, Ivey GN, Redekopp LG (2002) A weakly nonlinear model of long internal waves in closed basins. J Fluid Mech 467: 269–287CrossRefGoogle Scholar
  68. Hunkins K, Fliegel M (1973) Internal undular surges in Seneca Lake: a natural occurrence of solitons. J Geophys Res 7: 539–548CrossRefGoogle Scholar
  69. Hutchinson GE (1957) A treatize on limnology. Vol 1 Geography, Physics and Chemistry, Wiley, New York: p 10015Google Scholar
  70. Hüttemann, H (1997) Modulation interner Wasserwellen durch Variation der Bodentopographie. Diplomarbeit am Fachbereich Mechanik, Darmstadt University of Technology, 110 p. (unpublished)Google Scholar
  71. Hüttemann H and Hutter K (2001) Baroclinic solitary water waves in a two-layer fluid system with diffuse interface.Experiments in Fluids 30: 317–326CrossRefGoogle Scholar
  72. Hutter K (1983) Strömungsdynamische Untersuchungen im Zürich und Luganersee. Ein Vergleich von Feldmessungen mit Resultaten theoretischer Modelle. SchweizZ Hydrol 45: 101–144Google Scholar
  73. Hutter K (1986) Hydrodynamic modeling of lakes. Encyclopedia of Fluid Mechanics 6, Gulf Publishing: 897–998Google Scholar
  74. Hutter K (1991) (with contributions by Bäuerle, E., Salvadè, G., Spinedi, C. and Zamboni, F.), Large scale water movements in lakes.Aquatic Sciences 53: 100–135Google Scholar
  75. Hutter K, Salvadè G and Schwab DJ (1983) On internal wave dynamics in the northern basin of the Lake of Lugano. Geophys Astrophys Fluid Dyn 27: 299–236CrossRefGoogle Scholar
  76. Hutter K, Wang Y and Chubarenko I (2011) Physics of Lakes. Vol 2, Lakes as oscillators, Springer Verlag, Berlin etc.Google Scholar
  77. Hutter K, Filatov N, Maderich V, Nikishov V, Pelinovsky E, Vlasenko V (2007) ‘Strongly nonlinear internal waves in lakes: Generation, transformation, meromixis’ Final report of INTAS project No 03-51-3778Google Scholar
  78. Imberger J (1998) Flux paths in a stratified lake: A review: 1–17. In: Physical processes in lakes and oceans. (Imberger J, Ed.), Coastal and Estuarine Studies. American Geophysical UnionGoogle Scholar
  79. Jeffreys H (1923) The free oscillations of water in an elliptical lake. Proc Lond Math Soc 2nd Ser: p 455Google Scholar
  80. Joseph RI (1977) Solitary waves in a finite depth fluid. J Phys A10: L225–227Google Scholar
  81. Kanari S (1975) The long internal waves in Lake Biwa. Limnol Oceanogr 20: 544–553CrossRefGoogle Scholar
  82. Kanarska Y, Maderich V (2003) A non-hydrostatic numerical model for calculating free-surface stratified flows. Ocean Dynamics 53: 6–18CrossRefGoogle Scholar
  83. Kanarska Y, Maderich V (2004) Strongly non-linear waves and gravitational currents in rectangular basin. Applied Hydromechanics 6(78) No 2: 75–78Google Scholar
  84. Kanarska Y, Shchepetkin A, McWilliams JC (2007) Algorithm for non-hydrostatic dynamics in the Regional Oceanic Modeling System. Ocean Modelling 18: 143–174CrossRefGoogle Scholar
  85. Kelvin Thomson, Lord, W (1871) Hydrokinetic solutions and observations. Philosophical Magazine 42: 362–377Google Scholar
  86. Kao TW and Pao HP (1980) Wake collapse in the thermocline and internal solitary waves. J Fluid Mech 97: 117–127CrossRefGoogle Scholar
  87. Keulegan GK (1953) Characteristics of internal solitary waves. J Res Nat Bureau of Standards 51: 133–140CrossRefGoogle Scholar
  88. Kochkov NV (1989) The patterns of generation, evolution and destruction of internal waves in lakes. Doctoral Dissertation. Institute of Limnology, Leningrad [In Russian]Google Scholar
  89. Koop CG and Butler G (1981) An investigation of internal solitary waves in a two fluid system. J Fluid Mech 112: 225–251CrossRefGoogle Scholar
  90. Korteweg DJ and de Vries G (1895) On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary waves. Phil Mag 39: 422–443Google Scholar
  91. Kruskal MD (1978) The birth of the soliton. In: Nonlinear evolution equations solvable by the spectral transform (F. Calogero, ed), Pitman: 1–8Google Scholar
  92. Kubota T, Ko DRS nad Dobbs LD (1978) Weakly nonlinear, long internal gravity waves in stratified fluids of finite depth. AIAA J Hydronautics 12: 157–165Google Scholar
  93. Lamb GL, Jr (1980) Elements of soliton theory. John Wiley and Sons, New YorkGoogle Scholar
  94. Lee CY and Bearsley RC (1974) The generation of long nonlinear internal waves in a weakly stratified shear flow. J Geophys Res 79: 453–462CrossRefGoogle Scholar
  95. Lemmin U (1987) The structure and dynamics of internal waves in Baldeggersee. Limnol Oceanogr 32: 43–61CrossRefGoogle Scholar
  96. Lemmin U and Mortimer CH (1986) Tests of an extension to internal seiches of Defant’s procedure for determination of surface seiche characteristics in real lakes. Limnol Oceanogr 31(6): 1207–1231Google Scholar
  97. Lemmin U, Mortimer H and Bäuerle E (2005) Internal seiche dynamics in Lake Geneva. Limnol Oceanogr 50(1): 207–216Google Scholar
  98. Lighthill J (1969) Dynamic response of the Indian Ocean to onset of the southwest monsoon. Phil Trans Roy Soc London A265: 45–92Google Scholar
  99. Long RR (1956) Solitary waves in one- and two-fluid systems. Tellus 8: 460–470CrossRefGoogle Scholar
  100. Lovcov SV, Parfenov JuV, Rastegin AE, Rubcov V Ju, Chensky AG (1998) Macro-scale variability of water temperature and internal waves in Lake Baikal. Astrofisika I Fisika mikromira Proceed. School of Basic Physics Irkursk Univ: 279–285 [In Russian]Google Scholar
  101. Maderich V, Heling R, Bezhenar R, Brovchenko I, Jenner H, Koshebutskyy V, Kuschan A, Terletska K (2008) Development and application of the 3D numerical model THREETOX to the prediction of cooling water transport and mixing in inland and coastal waters. Hydrological Processes 22: 1000–1013CrossRefGoogle Scholar
  102. Maderich V, Grimshaw R, Talipova T, Pelinovsky E, Choi B, Brovenchko I, Terletska K, Kim D (2009) The transformation of an interfacial solitary wave of elevation at a bottom step. Nonlinear Processes in Geophysics 16: 1–10CrossRefGoogle Scholar
  103. Maderich V, Talipova T, Grimshaw R, Brovenchko I, Terletska K, Pelinovsky E, Choi B (2010) Interaction of a large amplitude interfacial solitary wave of depression with a bottom step. Phys Fluids doi:10.1063/1.3455984Google Scholar
  104. Marcelli L (1948) Sesse del Lago di Lugano. (Publ Ist Naz Geofis, Roma) Ann Geofis1: p 454Google Scholar
  105. Maslowe SA and Redekopp LG (1980) Long nonlinear waves in stratified shear flows. J Fluid Mech 101: 321–348CrossRefGoogle Scholar
  106. Maurer J (1993) Skaleneffekte bei internen Wellen im Zweischichtenfluid mit topographischen Erhebungen. Diplomarbeit am Fachbereich Mechanik, Darmstadt University of Technology (unpublished)Google Scholar
  107. Maurer J, Hutter K and Diebels S (1996) Experiments on scale effects in internal waves of two-layered fluids with variable depth. European Journal of Mechanics (B Fluids) 15: 445–470Google Scholar
  108. Maxworthy T (1979) A note on internal solitary waves produced by tidal flow over a three-dimensional ridge. J Geophys Res 84: 338–346CrossRefGoogle Scholar
  109. Maxworthy T (1980) On the formation of nonlinear internal waves from the gravitational collapse of mixed regions in two and three dimensions. J Fluid Mech 96: 47–64CrossRefGoogle Scholar
  110. McConnell A (1982) No Sea too Deep: The History of Oceanographic Instruments. Holger, BristolGoogle Scholar
  111. Merian JR (1885) Über die Bewegungen tropfbarer Flüssigkeiten in Gefässen. Abhandl JR Merian, Basel. Attracted little attention until reproduced by Von der Mühl, Math Ann 28: p 575Google Scholar
  112. Miles JW (1961) On the stability of heterogeneous flows. J Fluid Mech 10: 496–508CrossRefGoogle Scholar
  113. Miles JW (1981) The Korteweg-de Vries equation: A historical essay. J Fluid Mech 106: 131–147CrossRefGoogle Scholar
  114. Miura RM (1976) The Korteweg-de Vries equation: A survey of results. SIAM Review 18: 412–459CrossRefGoogle Scholar
  115. Mortimer CH (1952) Water movements in stratified lakes deduced from observations in Windermere and model experiments. Union Geod Geophys, Bruxelles, Assn Int Hydrol, C Rend Rapp 3: p 335Google Scholar
  116. Mortimer CH (1952) Water movements in lakes during summer stratification; evidence from the distribution of temperature in Windermere. Phil Trans Roy SocLondon B236: p 355Google Scholar
  117. Mortimer CH (1953) A review of temperature measurement in limnology. Mitt Int Ver Limnol1: p 25Google Scholar
  118. Mortimer CH (1953) The resonant response of stratified lakes to wind. Schweiz Z Hydrol 15: 94–151Google Scholar
  119. Mortimer CH (1955) Some effects of the Earth’s rotation on water movement in stratified lakes. Verh Internat Ver Limnol 12: p 66Google Scholar
  120. Mortimer CH (1956) E.H. Birge – an explorer of lakes, 163–211. In: E.A. Birge, a memoir, By CG Sellery, Madison University Wisconsin PressGoogle Scholar
  121. Mortimer CH (1963) Frontiers in physical limnology with particular reference to long waves in rotating basins. Great Lakes Res Div Publ. (University of Michigan) 10:9–42Google Scholar
  122. Mortimer CH (1974) Lake Hydrodynamics. Mitt Internat Verein Limnol 20: 124–197Google Scholar
  123. Mortimer CH (1979) Strategies for coupling data collection and analysis with dynamic modeling of lake motions. In: Hydrodynamics of lakes (WH Graf and CH Mortimer Eds) Eslevier Sci Publ Comp, Amsterdam, etc.:183–231Google Scholar
  124. Mortimer CH (1984) Measures and models in physical limnology. In: Hydrodynamics of Lakes (K. Hutter Ed) CISM Courses and Lectures Nr 286, Springer Verlag Vienna-New York: 287–322Google Scholar
  125. Mortimer CH (2004) Lake Michigan in motion: Responses of an inland sea to weather, earth-spin and human activities. University of Wisconsin PressGoogle Scholar
  126. Mortimer CH (2006) Inertial oscillations and related internal beat pulsations and surges in lakes Michigan and Ontario. Limnol Oceanogr 51(5): 1941–1955Google Scholar
  127. Mortimer CH and Fee EJ (1976) free surface oscillation and tides of Lakes Michigan and Superior. Phil Trans Soc Lond A281: p 1Google Scholar
  128. Mortimer CH, Horn W (1982) Internal wave dynamics and their implications for plankton biology in the Lake of Zurich. Vierteljahresschrift Natforsch Ges Zürich1 27: 299–318Google Scholar
  129. Mortimer CH and Moore WH (1953) The use of thermistors for the measurement of lake temperatures. Mitt Int Ver Limno l2: p 42Google Scholar
  130. Mysak LA (1984) Nonlinear internal waves. In: Hydrodynamics of Lakes. CISM Lecture Notes, Nr 286 [K. Hutter, ed.] Springer Verlag Vienna etc.: 129–152Google Scholar
  131. Neumann G (1941) Eigenschwingungen der Ostsee. Archiv der Deutschen Seewarte, Mar Observat 61(4)Google Scholar
  132. Ono H (1975) Algebraic solitary waves in stratified fluids. J Phys Soc Japan 39: 1082–1091CrossRefGoogle Scholar
  133. Osborne AR and Burch TL (1980) Internal solitons in the Andaman Sea. Science 208: 451–460CrossRefGoogle Scholar
  134. Platt RB and Shoup CS (1950) the use of a thermistor in a study of summer temperature conditions of mountain lake Virginia. Ecology 31: p 484Google Scholar
  135. Platzman GW and Rao DB (1964) Spectra of Lake Erie water levels. J Geophys Res 69: p 2525Google Scholar
  136. Platzman GW (1963) The dynamic prediction of wind tides on Lake Erie. Meteorol Monogr 4(26): p 44Google Scholar
  137. Platzman GW (1970) Ocean tides and related waves. Amer Math So., Lecturesin Appl Math 14:p 239Google Scholar
  138. Platzman GW (1972) Two-dimensional free oscillations in natural basins. J PhysOceanogr 2: 117–138Google Scholar
  139. Platzman GW (1975) Normal modes of the Atlantic and Indian Ocean. J Phys Oceanogr 5: 201–221Google Scholar
  140. Platzman GW (1984) Normal modes of the world ocean. Part III: A procedure for tidal synthesis. J Phys Oceanogr 14: 1521–1531CrossRefGoogle Scholar
  141. Platzman G and Rao DB (1964) The free oscillations of Lake Erie. In: Studieson Oceanography (Hidaka Volume) (ed. K. Yoshida) University of Washington Press: 359–382Google Scholar
  142. Proudman J (1928) On a general expansion in the theory of the tides. Proc LondMath Soc 29: 527–236Google Scholar
  143. Raggio G and Hutter K (1982a) An extended channel model for the prediction of motion in elongated homogeneous lakes, Part I: Theoretical introduction. JFluid Mech 121: 231–255CrossRefGoogle Scholar
  144. Raggio G and Hutter K (1982b) An extended channel model for the prediction of motion in elongated homogeneous lakes, Part II: First order model applied to ideal geometry. Rectangular basins with flat bottom. J Fluid Mech 121: 257–281CrossRefGoogle Scholar
  145. Raggio G and Hutter (1982c) An extended channel model for the prediction of motion in elongated homogeneous lakes, Part III: Free oscillations in natural basins. J Fluid Mech 121: 283–299Google Scholar
  146. Rao DB and Schwab D (1976) Two-dimensional normal modes in arbitrary enclosed basins on the rotating Earth: Applications to Lakes Ontario and Superior. Phil Trans Roy Soc London A281: 63–96Google Scholar
  147. Rao DB, Mortimer CH and Schwab DJ (1976) Surface normal modes of LakeMichigan: calculations compared with spectra of observed water level fluctuations. J Phys Oceanogr 6: 575–588CrossRefGoogle Scholar
  148. Richardson LF (1925) Turbulence and vertical temperature difference near trees. Phil Mag 49: p. 81Google Scholar
  149. Roget E (1992) Internal Seiches and Barclinic Currents in Lake Banyoles. Ph. D.Thesis, Autonomous University, Barcelona,pp 287Google Scholar
  150. Roget E, Salvadè G and Zamboni F (1997) Internal seiche climatology in a small lake where transversal and second vertical modes are usually observed. LimnolOceanogr 42(4): 663–673CrossRefGoogle Scholar
  151. Rukhovets L, Filatov N (Eds.) (2009) Ladoga and Onego - Great European Lakes:Modelling and Experiment. London. Springer-Praxis, pp 302Google Scholar
  152. Ruttner F (1952) Grundriss der Limnologie, 2nd ed, Berlin Gruyter, 232, translated by Fry FEJ and Frey DG as Fundamentals of Limnology, Toronto University PressGoogle Scholar
  153. Saggio A and Imberger J (1998) Internal wave weather in a stratified lake. Limnol Oceanogr 43(8): 1780–1795Google Scholar
  154. Saggio A, Imberger J (2001) Mixing and turbulent fluxes in the metalimnion of a stratified lake. Limnol Oceanogr 46: 392–409CrossRefGoogle Scholar
  155. Salvadè G, Zamboni F and Barbieri A (1988) Three-layer model of the north basin of Lake of Lugano. Annales Geophysicae 5B: 247–259Google Scholar
  156. Sauberer F and Ruttner F (1941) Die Strahlungsverhältnisse der Binnengewässer. Becker and Erler, Leipzig: p 240Google Scholar
  157. Saussure HB, de (1799) Voyages dans les Alpes. NeuchatelGoogle Scholar
  158. Schmidt W (1917) Wirkungen der ungeordneten Bewegungen im Wasser der Meere und Seen. Ann Hydrogr Mar Met 367: p 431Google Scholar
  159. Schuster B (1991) Experimente zu nichtlinearen internen Wellen großer Amplitudein einem Rechteckkanal mit variabler Bodentopographie. Doctoral Dissertation, TH Darmstadt vii + (1–165) (unpublished)Google Scholar
  160. Schwab DJ (1977) Internal free oscillations in Lake Ontario. Limnol Oceanogr 22: 700–708CrossRefGoogle Scholar
  161. Segur H and Hammak JL (1982) Soliton models of long internal waves. J Fluid Mech 118: 285–304CrossRefGoogle Scholar
  162. Servais F (1975) Etude théorique des oscillations libres (seiches) du Lac Tanganika. Explor Hydrobiol Lac Tanganika, 1946–1947. Inst Roy Sci Nat Belique, Bruxelles 2: p 3Google Scholar
  163. Shimaraev MN, Verbolov VI, Granin NG, Sherstyankin PP (1994) Physical limnology of Lake Baikal: a review. Baikal International Center for Ecological Research, Print N2, Irkutsk-OkayamaGoogle Scholar
  164. Shimizu K and Imberger J (2008) Energetics and damping of basin-scale waves in a strongly stratified lake. Limnol Oceanogr 53(4): 1574–1588Google Scholar
  165. Shimizu K, Imberger, J and Kumagai M (2007) Horizontal structure and excitation of primary motions in a strongly stratified lake. Limnol Oceanogr 52(6): 2641–2655Google Scholar
  166. Spilhaus FM and Mortimer CH (1977) A bathythermograph. J Mar Res, Yale 1: p 95Google Scholar
  167. Stashchuk N, Vlasenko V, Hutter K (2005) Numerical mechanisms of disintegration of basin-scale internal waves in a tank filled with stratified water. Nonlinear Processes in Geophysic 12: 955–964CrossRefGoogle Scholar
  168. Stashchuk N, Filatov NN, Vlasenko V, Petrov M, Terzhevik A, Zdorovennov R (2005) Transformation and disintegration of internal waves near lake boundary. Abstract EGU05-A-02701; SRef-ID: 1607–7962/gra/ EGU05-A-02701Google Scholar
  169. Stocker K and Salvadè G (1986) Interne Wellen im Luganersee. Bericht Nr I/85 der Versuchsanstalt für Wasserbau, Hydrologie und Glazionlogie an der ETH Zürich (unpublished)Google Scholar
  170. Stocker K, Hutter K, Salvadè G, Trösch J and Zamboni F (1987) Observations and analysis of internal seiches in the Southern Basin of Lake of Lugano. AnnGeophysicae 5B: 553–568Google Scholar
  171. Strom KM (1939) A reversing thermometer by Richter and Wiese with 1/100°C graduation. Int Rev Hydrol 38: p 259Google Scholar
  172. Sveen JK, Guo Y, Davies PA, Grue J (2002) On the breaking of internal solitary waves at a ridge. J Fluid Mech 469: 161–188CrossRefGoogle Scholar
  173. Taylor GI (1920) Tidal oscillations in gulfs and rectangular basins. Proc Lond Math Soc, 2nd Ser 20: p 148Google Scholar
  174. Thorpe SA (1974) Near-resonance forcing in a shallow two-layer fluid: a model for the internal surge in Loch Ness. J Fluid Mech 69: 509–527.CrossRefGoogle Scholar
  175. Thorpe SA (1977) Turbulence and mixing in a Scottish loch. Phil Trans R Soc London A286: 125–181Google Scholar
  176. Thorpe SA (1997) On the interaction of internal waves reflecting from slopes. J Phys Oceanogr 27: 2072–2078CrossRefGoogle Scholar
  177. Thorpe SA, Keen JM, Jiang R, Lemmin U (1996) High-frequency internal waves in Lake Geneva. Phil Trans Royal Soc LondonA 354: 170, 237–257Google Scholar
  178. Thorpe SA, Lemmin U (1999) Internal waves and temperature fronts on slopes. Ann Geophysicae 17: 1227–1234CrossRefGoogle Scholar
  179. Tison LJ and Tison G Jr (1969) Seiches et dénivellations causées par le vent dans les lacs, baies, estuaries. Note Technique No 102, Organisation Météorologique Mondiale, Genève, SuisseGoogle Scholar
  180. Tung KK, Ko DRS and Chang JJ (1981) Weakly nonlinear internal waves in shear. Studies Appl Math 65: 189–221Google Scholar
  181. Vaucher JPE (1833) Mémoire sur les seiches du Lac de Genève, composé de 1803 à 1804. Mem Soc Phys Genève6: p 35Google Scholar
  182. Verbolov VI. (Ed.) (1984) Hydrology of Lake Baikal and other waters. In: Hydrology of Lake Baikal and other water bodies. Nauka, Novosibirsk [In Russian]Google Scholar
  183. Vlasenko V and Hutter K (2001) Generation of second mode solitary waves by the interaction of a first mode soliton with a sill. Nonlinear Processes in Geophys 8: 223–239CrossRefGoogle Scholar
  184. Vlasenko V and Hutter K (2002a) Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography, J Phys Oceanogr 32: 1779–1793CrossRefGoogle Scholar
  185. Vlasenko V and Hutter K (2002b) Transformation and disintegration of strongly nonlinear internal waves by topography in stratified lakes. Annales Geophysicae 20: 2087–2113CrossRefGoogle Scholar
  186. Vlasenko V, Filatov NN, Petrov M, Terzhevik A, Zdorovennov R, Stashchuk N (2005) Observation and modelling of nonlinear internal waves in Lake Onego. Proc 9-th Workshop on PPNW, Lancaster University: 39–46Google Scholar
  187. Vlasenko V, Stashchuk N and Hutter K (2003)Baroclinic tides: mathematical aspects of their modelling. Recent Res Devel Phys Oceanography 2: 61–96Google Scholar
  188. Vlasenko V, Stashchuk N and Hutter K (2005b) Baroclinic tides. Theoretical modelling and observational evidence. Cambridge University PressCrossRefGoogle Scholar
  189. Warren HW and Whipple GC (1895) The thermophone, a new instrument for determining temperature. Technol Quart 8: p 125Google Scholar
  190. Wedderburn EM and Young AW (1915) Temperature observations in Loch Earn, Part II, Trans Royal Soc Edinburgh 50: p 741Google Scholar
  191. Wessels, F Wechselwirkung interner Wellen im Zweischichtenfluid mit topographischen Erhebungen.Diplomarbeit am Fachbereich Mechanik, Darmstadt University of Technology, pp 69 (unpublished)Google Scholar
  192. Wessels F and Hutter K (1996) Interaction of internal waves with a topographic sill in a two-layered fluid. J Phys Oceanogr 26(1): 5–20Google Scholar
  193. Whitham G (1967) Nonlinear dispersive waves. Proc Royal Soc London A299: 6–25Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.c/o Laboratory of Hydraulics, Hydrology and GlaciologyZurichSwitzerland

Personalised recommendations