Advertisement

Performative Surfaces Computational Form Finding Processes for the Inclusion of Detail in the Surface Condition

  • Matias del Campo
  • Sandra Manninger
Conference paper

Abstract

The main aim of this paper is to explore the relationship between form finding processes and the simultaneous emergence of detail solutions in the process, in opposition to concepts of addition. Additive systems form the prevailing method in the discipline of architecture when it comes to solve problems of transitions between interior and exterior. Another convention in architectural design is the usage of detail in the moments of transition between varying material conditions. It is still a question of definition as to what can be considered a detail, provided the conversation focuses on aspects which form an alternative mode of thinking in the architectural realm. With the aid of the example of the Austrian Pavilion for the Shanghai Expo 2010, an optional method in the relation between surface behavior, performance and detail is examined in this paper.

Keywords

Architectural Design Topological Surface Gypsum Board Parametric Tool Individual Panel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kipp, A.: Technik im Barock, http://www.museumsprojekte.de/Start/Service/Skripte/biblio.htm (visited June 8, 2010)
  2. 2.
    Hersey, G.: Architecture and Geometry in the Age of the Baroque, p. 5. The University of Chicago Press, Chicago (2001)Google Scholar
  3. 3.
    de landa, M.: Uniformity and Variability an Essay in the Philosophy of Matter, http://evans-experientialism.freewebspace.com/de_landa01.htm (visited June 10, 2011)
  4. 4.
    de Landa, M.: Intensive Science and Virtual Philosophy, Continuum, New York, p. 12 (2002)Google Scholar
  5. 5.
    Lammers, J., Gooding, L.: Maya 4.5 Fundamentals, p. 148. New Riders, Indianapolis (2003)Google Scholar
  6. 6.
    Gould, D.A.D.: Complete Maya Programming, An extensive Guide to MEL and the C++ API, p. 476. Morgan Kaufmann Publishers an imprint of Elsevier, San Francisco (2003)Google Scholar
  7. 7.
    Weissstein, E.W.: Topology. From MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/Topology.html
  8. 8.
    Weisstein, E.W.: Tessellation.From MathWorld –A Wolfram Web Resource, http://mathworld.wolfram.com/Tessellation.html
  9. 9.
    Lynn, G., Lynn, G., Rashid, H.: Architectural Laboratories, p. 25. NAi Publishers, Rotterdam (2002)Google Scholar
  10. 10.
    Balliet, C., Buck, B.: Visual Catalog: Greg Lynns Studio at the University of Applied Arts Vienna, p. 14. Springer, New York (2010)Google Scholar
  11. 11.
    Semper, G.: Der Stil in den technischen und tektonischen Künsten oder Praktische Ästhetik, Verlag für Kunst und Wissenschaft, Frankfurt, S77–S79 (1860) Google Scholar
  12. 12.
    Cook, M.: Digital Tectonics, Historical Perspective – Future Prospects. In: Leach, N., et al. (eds.) Digital Tectonics, pp. 41–49. Wiley-Academy, Chichaster (2004)Google Scholar
  13. 13.
    de Landa, M.: A Thousand Years of Nonlinear History, p. 14. MIT Press, Cambridge (1997)Google Scholar
  14. 14.
    del Campo, M., Manninger, S.: In: Goldenberg, E. (ed.) Rhythm & Resolution, from the upcoming book Pulsation. J. Ross Publishing, Fort Lauderdale (2011)Google Scholar
  15. 15.
    Beal Center for Arts & technology webpage (June 12, 2011), http://beallcenter.uci.edu/exhibitions/predator.php

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Matias del Campo
    • 1
  • Sandra Manninger
    • 1
  1. 1.SPANDessau

Personalised recommendations