Mass Metrology pp 321-346 | Cite as

Redefining the Unit of Mass

Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 155)

Abstract

The problem in defining a measurement unit in terms of an artefact is the long time constancy of the quantity contained in the artefact. Maxwell James Clark was perhaps the first scientist to oppose to defining a unit in terms of an artefact. He said “If we wish to obtain standard of length, time and mass, which shall be absolutely permanent, we must not seek them in dimension, motion, and mass of a planet but in terms of wavelength, period of vibration and the absolute mass of the imperishable and unalterable and perfectly similar molecules”. Max Planck went even further and advocated that units of measurements should be defined in terms of fundamental constants of nature instead of atoms or molecules.

Keywords

Josephson Junction Planck Constant Fundamental Constant Relative Standard Uncertainty Silicon Isotope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    CODATA Bull. 63 (1986)Google Scholar
  2. 2.
    T.J. Quinn, Base units of the Système international d’unités, their accuracy, dissemination and international traceability. Metrologia 31, 515–527 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    S.E. Virgo, Sci. Prog. 27, 635–661 (1932)Google Scholar
  4. 4.
    R.D. Deslattes, Ann. Rev. Phys. Chem. 31, 593–607 (1980)CrossRefGoogle Scholar
  5. 5.
    J.P. Mathieu, Cahiers of histoire et philosphies des sciences 9, 1–109, (1984)Google Scholar
  6. 6.
    G. Mana, G. Zosi, Rev. Nuovo Cimento. 18, 1–23 (1995)CrossRefGoogle Scholar
  7. 7.
    P. Becker, H. Bettin, L. Koenders, J. Martin, A. Nicolause, S. Rottger, The silicon path to the kilogram, PTB Mitteilungen. 106, 321–329 (1996)Google Scholar
  8. 8.
    P. Becker, Metrologia 38, 85–86 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    P. Becker, Tracing the definition of the kilogram to the Avogadro constant using a silicon single crystal. Metrologia. 40, 366–375 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    J. Perrin, CR Acad. Sci. (Paris) 149, 477–9 (1909)Google Scholar
  11. 11.
    J. Perrin, CR Acad. Sci. (Paris) 152, 1380–2 (1911)ADSGoogle Scholar
  12. 12.
    E. Rutherford, H. Geiger, Phys. Zeits. 10, 1–6 (1909)Google Scholar
  13. 13.
    P.L. DuNouy, Science 59, 580–582 (1924)ADSCrossRefGoogle Scholar
  14. 14.
    J.A. Bearden, Phys. Rev. 37, 1210–1229 (1931)ADSCrossRefGoogle Scholar
  15. 15.
    P.J. Mohr, B.N. Taylor, CODATA 2006, Rev. Mod. Phys. 80, 633 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    S.V. Gupta, Practical Density Measurements and Hydrometry (Institute of Physics, UK, 2002)CrossRefGoogle Scholar
  17. 17.
    R. Krause-Rehberg, H.S. Leipner, A. Kupsch, A. Polity, T. Drost, Phys. Rev. B 49, 2385–2395 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    W.B. Knowlton, J.T. Walton, J.S. Lee, Y.K. Wong, E.E. Haller, W. von Ammon, W. Zulehner, Mater. Sci. Forum. 201, 1761–1765 (1995)CrossRefGoogle Scholar
  19. 19.
    H. Lemke, W. Zulehner, Phys. B273–274, 398–403 (1999)CrossRefGoogle Scholar
  20. 20.
    J. Gebeuer, F. Rudolf, A. Polity, R. Krause-Rehberg, J. Martin, P. Becker, Appl. Phys. A. 68, 411–416 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    L. Vegard, Z. Phys. 5, 17–25 (1921)ADSCrossRefGoogle Scholar
  22. 22.
    R.D. Deslattes, A. Henins, H.A. Bowman, R.M. Schoonover, C.L. Caroll, I.L. Barmes, L.A. Machlan, L.A. Moore, W.R. Shields, Phys. Rev. Lett. 33, 463–466 (1974)ADSCrossRefGoogle Scholar
  23. 23.
    P. Seyfried et al., Z. Phys. B. 87, 289–298 (1992)ADSCrossRefGoogle Scholar
  24. 24.
    G. Basile, A. Bergamin, G. Cavagenero, G. Manna, Phys. Rev. Lett. 72, 3133–3136 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    H. Fujimoto, M. Tanaka, K. Nakyama, IEEE Trans. Instrum. Measur. 44, 471–474 (1995)CrossRefGoogle Scholar
  26. 26.
    M. Glaser, Tracing of atomic mass unit to the kilogram by ion accumulation. Metrologia 40, 376–386 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    C. Schiegel, F. Scholtz, M. Glasser, G. Bethke, Accumulation of 38 mg of bismuth in a cylindrical collector from a 2.5 mA ion beam. Metrologia 44, 24–28 (2007)Google Scholar
  28. 28.
    A. Eichenberger, B. Jeckmann, P. Richard, Tracing Plank constant by electro-mechanical methods. Metrologia 40, 356–365 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    D.B. Sullivan, N.V. Friedrich, Can superconductivity contribute to the determination of the absolute ampere. IEEE Trans. Magn. 13, 396–399 (1977)ADSCrossRefGoogle Scholar
  30. 30.
    B.P. Kibble, Realising the ampere by levitating a super conducting mass – a suggested procedure. IEEE Trans. Instrum. Measur. 32, 144 (1983)CrossRefGoogle Scholar
  31. 31.
    F. Shiota, K. Hara, A study of a super-conducting magnetic levitation system for absolute determination of magnetic flux quantum. IEEE Trans. Instrum. Measur. 36, 271–274 (1987)Google Scholar
  32. 32.
    F. Shiota, Y. Miki, A. Namba, Y. Nezu, Y. Sakamoto, T. Morokuma, K. Hara, Absolute determination of the magnetic flux quantum using super-conducting magnetic levitation. IEEE Trans. Instrum. Measur. 44, 583–586 (1995)CrossRefGoogle Scholar
  33. 33.
    E.T. Frantsuz, Y.D. Gorchakov, V.M. Khavinson, Measurement of magnetic flux quantum, Planck constant and elementary charge at VNIIM. IEEE Trans. Instrum. Measur. 41, 482–485 (1992)Google Scholar
  34. 34.
    F. Shiota, Y. Miki, Y. Fujii, T. Morokuma, Y. Nezu, Evaluation of equilibrium trajectory of super-conducting magnetic levitation for the future of kg unit of mass. IEEE Trans. Instrum. Measur. 49, 1117–1121 (2000)CrossRefGoogle Scholar
  35. 35.
    Y. Fujii, Y. Miki, F. Shiota, T. Morokuma, Mechanism for levetiated super-conductor experiment. IEEE Trans. Instrum. Measur. 50, 580–582 (2001)CrossRefGoogle Scholar
  36. 36.
    K. Riski, P. Heikkinen, H. Kajastie, J. Manninen, H. Rossi, K. Nummila, E. Frantsuz, V. Khavinson, Design of a super-conducting magnetic levitation system, in Proceedings of the IMEKO TC3, 2001, pp. 239–246Google Scholar
  37. 37.
    V. Bego, Determination of the kilogram by means of the voltage balances. Metrologia 25, 127–133 (1988)ADSCrossRefGoogle Scholar
  38. 38.
    T. Funck, V. Sienknecht, Determination of the volt with improved PTB voltage balance. IEEE Trans. Instrum, Measur. 40, 158–161 (1991)Google Scholar
  39. 39.
    P.J. Mohr, B.N. Taylor, CODATA, recommended values of the fundamental physical constants. 1998, Rev. Mod. Phys. 72, 351–495 (2000)Google Scholar
  40. 40.
    V. Bego, J. Butorac, K. Poljancic, Voltage balance replacing kilogram. IEEE Trans. Instrum. Measur. 44, 579–582 (1995)CrossRefGoogle Scholar
  41. 41.
    V. Bego, J. Butorac, D. Ilic, Realization of the kilogram by measuring at 100 kV voltage balance. IEEE Trans. Instrum. Measur. 48, 212–215 (1999)CrossRefGoogle Scholar
  42. 42.
    B.P. Kibble, R.C. Smith, I.A. Robinson, The NPL moving coil ampere determination. IEEE Trans. Instrum. Measur. 32, 141–143 (1983)CrossRefGoogle Scholar
  43. 43.
    B.P. Kibble, I.A. Robinson, J.H. Belliss, A realisation of the SI watt by NPL moving coil balance. Metrologia 27, 173–192 (1990)ADSCrossRefGoogle Scholar
  44. 44.
    B.P. Kibble, I.A. Robinson, J.H. Belliss, Re-defining the kilogram via a moving Coil Apparatus, in Conference on Precision Electromagnetic Measurements, CPEM, Conference Digest, 1990, pp. 178–179Google Scholar
  45. 45.
    B.P. Kibble, I.A. Robinson, J.H. Belliss, The new NPL moving Coil watt balance – a progress report, in Conference on Precision Electromagnetic Measurements, CPEM, Conference Digest, 1992, pp. 8–9Google Scholar
  46. 46.
    I.A. Robinson, B.P. Kibble, The NPL moving-coil apparatus for measuring Planck’s constant and monitoring the kilogram, IEEE Trans. Instrum. Meas. 46, 596–600 (1997)CrossRefGoogle Scholar
  47. 47.
    I.A. Robinson, B.P. Kibble, Progress in relating the kilogram to Planck’s constant, in Conference on Precision Electromagnetic Measurements, CPEM, Conference Digest, 2002, pp. 574–575Google Scholar
  48. 48.
    P.T. Olsen, V.E. Bower, W.D. Phillips, E.R. Williams, G.R. Jones, The NBS absolute ampere experiment, IEEE Trans. Instrum. Meas. 34, 175–181 (1985)CrossRefGoogle Scholar
  49. 49.
    P.T. Olsen, R.E. Elmquist, W.D. Phillips, E.R. Williams, G.R. Jones, V.E. Bower, A measurement of the NBS electrical watt in SI units, IEEE Trans. Instrum. Meas. 38, 238–244 (1989)CrossRefGoogle Scholar
  50. 50.
    R.L. Steiner et al., NIST watt balance: progress monitoring the kilogram. IEEE Trans. Instrum. Measur. 46, 601–604 (1997)MathSciNetCrossRefGoogle Scholar
  51. 51.
    E.R. Williams, et al., Accurate measurement of the Planck’s constant. Phys. Rev. Lett. 81, 2404–2407, (1998)ADSCrossRefGoogle Scholar
  52. 52.
    D.B. Newell, J.P. Schwarz, E.R. Williams, Reference standard uncertainties and future of NIST electronic kilogram, in Proceedings on the NCSL Workshop and Symposium, 1999, 1999, pp. 319–326Google Scholar
  53. 53.
    W. Beeer et al, A proposal for a new moving coil experiment, IEEE Trans. Instrum.Measur. 48, 192–194 (1999)CrossRefGoogle Scholar
  54. 54.
    W. Beer et al., Status of METAS watt balance experiment, IEEE Trans. Instrum. Measur. 52, 626–630 (2003)CrossRefGoogle Scholar
  55. 55.
    R.L. Steiner, E.R. Williams, D.B. Newell, R. Liu, Towards an electronic kilogram: an improved measurement of the Planck constant and electron mass, Metrologia 42, 431–441 (2005)ADSCrossRefGoogle Scholar
  56. 56.
    S.K. Mukherjee, A. Choudhary, Unit of mass-New definition, ISI Bull. 24, 288 (1973)Google Scholar
  57. 57.
    B.N. Taylor, P.J. Mohr, On the definition of the kilogram, Metrologia 36, 63–64 (1999)ADSCrossRefGoogle Scholar
  58. 58.
    B.N. Taylor, P.J. Mohr, The role of fundamental constants in the International System of Units (SI) present and future, IEEE Trans. Instrum, Measur. 50, 563–567 (2001)Google Scholar
  59. 59.
    J.L. Flowers, B.W. Petley, The kilogram redefinition- an interim solution, Metrologia 42, L31–L34 (2005)ADSCrossRefGoogle Scholar
  60. 60.
    V.E. Bower, R.S. Davis, J. Res. Natl. Bur. Stand. 85, 175 (1980)Google Scholar
  61. 61.
    W. Schwitz, B. Jeckelmann, P. Richard, Towards the a new kilogram definition based on a fundamental constant, CR Phys. 5, 881–882 (2004)ADSGoogle Scholar
  62. 62.
    W.K. Clothier, G.J. Sloggett, H. Bairnsfather, M.F. Currey, D.J. Benjamin, A determination of the Volt, Metrologia 26, 9 (1989)ADSCrossRefGoogle Scholar
  63. 63.
    The International System of Units (SI), BIPM, Pavillon de Bretuil (Parc de Saint Cloud), Sevres, F-92310, France ParisGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.DelhiIndia

Personalised recommendations