Mass Metrology pp 321-346 | Cite as
Redefining the Unit of Mass
Abstract
The problem in defining a measurement unit in terms of an artefact is the long time constancy of the quantity contained in the artefact. Maxwell James Clark was perhaps the first scientist to oppose to defining a unit in terms of an artefact. He said “If we wish to obtain standard of length, time and mass, which shall be absolutely permanent, we must not seek them in dimension, motion, and mass of a planet but in terms of wavelength, period of vibration and the absolute mass of the imperishable and unalterable and perfectly similar molecules”. Max Planck went even further and advocated that units of measurements should be defined in terms of fundamental constants of nature instead of atoms or molecules.
Keywords
Josephson Junction Planck Constant Fundamental Constant Relative Standard Uncertainty Silicon IsotopeReferences
- 1.CODATA Bull. 63 (1986)Google Scholar
- 2.T.J. Quinn, Base units of the Système international d’unités, their accuracy, dissemination and international traceability. Metrologia 31, 515–527 (1995)ADSCrossRefGoogle Scholar
- 3.S.E. Virgo, Sci. Prog. 27, 635–661 (1932)Google Scholar
- 4.R.D. Deslattes, Ann. Rev. Phys. Chem. 31, 593–607 (1980)CrossRefGoogle Scholar
- 5.J.P. Mathieu, Cahiers of histoire et philosphies des sciences 9, 1–109, (1984)Google Scholar
- 6.G. Mana, G. Zosi, Rev. Nuovo Cimento. 18, 1–23 (1995)CrossRefGoogle Scholar
- 7.P. Becker, H. Bettin, L. Koenders, J. Martin, A. Nicolause, S. Rottger, The silicon path to the kilogram, PTB Mitteilungen. 106, 321–329 (1996)Google Scholar
- 8.P. Becker, Metrologia 38, 85–86 (2001)ADSCrossRefGoogle Scholar
- 9.P. Becker, Tracing the definition of the kilogram to the Avogadro constant using a silicon single crystal. Metrologia. 40, 366–375 (2003)ADSCrossRefGoogle Scholar
- 10.J. Perrin, CR Acad. Sci. (Paris) 149, 477–9 (1909)Google Scholar
- 11.J. Perrin, CR Acad. Sci. (Paris) 152, 1380–2 (1911)ADSGoogle Scholar
- 12.E. Rutherford, H. Geiger, Phys. Zeits. 10, 1–6 (1909)Google Scholar
- 13.P.L. DuNouy, Science 59, 580–582 (1924)ADSCrossRefGoogle Scholar
- 14.J.A. Bearden, Phys. Rev. 37, 1210–1229 (1931)ADSCrossRefGoogle Scholar
- 15.P.J. Mohr, B.N. Taylor, CODATA 2006, Rev. Mod. Phys. 80, 633 (2008)ADSCrossRefGoogle Scholar
- 16.S.V. Gupta, Practical Density Measurements and Hydrometry (Institute of Physics, UK, 2002)CrossRefGoogle Scholar
- 17.R. Krause-Rehberg, H.S. Leipner, A. Kupsch, A. Polity, T. Drost, Phys. Rev. B 49, 2385–2395 (1994)ADSCrossRefGoogle Scholar
- 18.W.B. Knowlton, J.T. Walton, J.S. Lee, Y.K. Wong, E.E. Haller, W. von Ammon, W. Zulehner, Mater. Sci. Forum. 201, 1761–1765 (1995)CrossRefGoogle Scholar
- 19.H. Lemke, W. Zulehner, Phys. B273–274, 398–403 (1999)CrossRefGoogle Scholar
- 20.J. Gebeuer, F. Rudolf, A. Polity, R. Krause-Rehberg, J. Martin, P. Becker, Appl. Phys. A. 68, 411–416 (1999)ADSCrossRefGoogle Scholar
- 21.L. Vegard, Z. Phys. 5, 17–25 (1921)ADSCrossRefGoogle Scholar
- 22.R.D. Deslattes, A. Henins, H.A. Bowman, R.M. Schoonover, C.L. Caroll, I.L. Barmes, L.A. Machlan, L.A. Moore, W.R. Shields, Phys. Rev. Lett. 33, 463–466 (1974)ADSCrossRefGoogle Scholar
- 23.P. Seyfried et al., Z. Phys. B. 87, 289–298 (1992)ADSCrossRefGoogle Scholar
- 24.G. Basile, A. Bergamin, G. Cavagenero, G. Manna, Phys. Rev. Lett. 72, 3133–3136 (1994)ADSCrossRefGoogle Scholar
- 25.H. Fujimoto, M. Tanaka, K. Nakyama, IEEE Trans. Instrum. Measur. 44, 471–474 (1995)CrossRefGoogle Scholar
- 26.M. Glaser, Tracing of atomic mass unit to the kilogram by ion accumulation. Metrologia 40, 376–386 (2003)ADSCrossRefGoogle Scholar
- 27.C. Schiegel, F. Scholtz, M. Glasser, G. Bethke, Accumulation of 38 mg of bismuth in a cylindrical collector from a 2.5 mA ion beam. Metrologia 44, 24–28 (2007)Google Scholar
- 28.A. Eichenberger, B. Jeckmann, P. Richard, Tracing Plank constant by electro-mechanical methods. Metrologia 40, 356–365 (2003)ADSCrossRefGoogle Scholar
- 29.D.B. Sullivan, N.V. Friedrich, Can superconductivity contribute to the determination of the absolute ampere. IEEE Trans. Magn. 13, 396–399 (1977)ADSCrossRefGoogle Scholar
- 30.B.P. Kibble, Realising the ampere by levitating a super conducting mass – a suggested procedure. IEEE Trans. Instrum. Measur. 32, 144 (1983)CrossRefGoogle Scholar
- 31.F. Shiota, K. Hara, A study of a super-conducting magnetic levitation system for absolute determination of magnetic flux quantum. IEEE Trans. Instrum. Measur. 36, 271–274 (1987)Google Scholar
- 32.F. Shiota, Y. Miki, A. Namba, Y. Nezu, Y. Sakamoto, T. Morokuma, K. Hara, Absolute determination of the magnetic flux quantum using super-conducting magnetic levitation. IEEE Trans. Instrum. Measur. 44, 583–586 (1995)CrossRefGoogle Scholar
- 33.E.T. Frantsuz, Y.D. Gorchakov, V.M. Khavinson, Measurement of magnetic flux quantum, Planck constant and elementary charge at VNIIM. IEEE Trans. Instrum. Measur. 41, 482–485 (1992)Google Scholar
- 34.F. Shiota, Y. Miki, Y. Fujii, T. Morokuma, Y. Nezu, Evaluation of equilibrium trajectory of super-conducting magnetic levitation for the future of kg unit of mass. IEEE Trans. Instrum. Measur. 49, 1117–1121 (2000)CrossRefGoogle Scholar
- 35.Y. Fujii, Y. Miki, F. Shiota, T. Morokuma, Mechanism for levetiated super-conductor experiment. IEEE Trans. Instrum. Measur. 50, 580–582 (2001)CrossRefGoogle Scholar
- 36.K. Riski, P. Heikkinen, H. Kajastie, J. Manninen, H. Rossi, K. Nummila, E. Frantsuz, V. Khavinson, Design of a super-conducting magnetic levitation system, in Proceedings of the IMEKO TC3, 2001, pp. 239–246Google Scholar
- 37.V. Bego, Determination of the kilogram by means of the voltage balances. Metrologia 25, 127–133 (1988)ADSCrossRefGoogle Scholar
- 38.T. Funck, V. Sienknecht, Determination of the volt with improved PTB voltage balance. IEEE Trans. Instrum, Measur. 40, 158–161 (1991)Google Scholar
- 39.P.J. Mohr, B.N. Taylor, CODATA, recommended values of the fundamental physical constants. 1998, Rev. Mod. Phys. 72, 351–495 (2000)Google Scholar
- 40.V. Bego, J. Butorac, K. Poljancic, Voltage balance replacing kilogram. IEEE Trans. Instrum. Measur. 44, 579–582 (1995)CrossRefGoogle Scholar
- 41.V. Bego, J. Butorac, D. Ilic, Realization of the kilogram by measuring at 100 kV voltage balance. IEEE Trans. Instrum. Measur. 48, 212–215 (1999)CrossRefGoogle Scholar
- 42.B.P. Kibble, R.C. Smith, I.A. Robinson, The NPL moving coil ampere determination. IEEE Trans. Instrum. Measur. 32, 141–143 (1983)CrossRefGoogle Scholar
- 43.B.P. Kibble, I.A. Robinson, J.H. Belliss, A realisation of the SI watt by NPL moving coil balance. Metrologia 27, 173–192 (1990)ADSCrossRefGoogle Scholar
- 44.B.P. Kibble, I.A. Robinson, J.H. Belliss, Re-defining the kilogram via a moving Coil Apparatus, in Conference on Precision Electromagnetic Measurements, CPEM, Conference Digest, 1990, pp. 178–179Google Scholar
- 45.B.P. Kibble, I.A. Robinson, J.H. Belliss, The new NPL moving Coil watt balance – a progress report, in Conference on Precision Electromagnetic Measurements, CPEM, Conference Digest, 1992, pp. 8–9Google Scholar
- 46.I.A. Robinson, B.P. Kibble, The NPL moving-coil apparatus for measuring Planck’s constant and monitoring the kilogram, IEEE Trans. Instrum. Meas. 46, 596–600 (1997)CrossRefGoogle Scholar
- 47.I.A. Robinson, B.P. Kibble, Progress in relating the kilogram to Planck’s constant, in Conference on Precision Electromagnetic Measurements, CPEM, Conference Digest, 2002, pp. 574–575Google Scholar
- 48.P.T. Olsen, V.E. Bower, W.D. Phillips, E.R. Williams, G.R. Jones, The NBS absolute ampere experiment, IEEE Trans. Instrum. Meas. 34, 175–181 (1985)CrossRefGoogle Scholar
- 49.P.T. Olsen, R.E. Elmquist, W.D. Phillips, E.R. Williams, G.R. Jones, V.E. Bower, A measurement of the NBS electrical watt in SI units, IEEE Trans. Instrum. Meas. 38, 238–244 (1989)CrossRefGoogle Scholar
- 50.R.L. Steiner et al., NIST watt balance: progress monitoring the kilogram. IEEE Trans. Instrum. Measur. 46, 601–604 (1997)MathSciNetCrossRefGoogle Scholar
- 51.E.R. Williams, et al., Accurate measurement of the Planck’s constant. Phys. Rev. Lett. 81, 2404–2407, (1998)ADSCrossRefGoogle Scholar
- 52.D.B. Newell, J.P. Schwarz, E.R. Williams, Reference standard uncertainties and future of NIST electronic kilogram, in Proceedings on the NCSL Workshop and Symposium, 1999, 1999, pp. 319–326Google Scholar
- 53.W. Beeer et al, A proposal for a new moving coil experiment, IEEE Trans. Instrum.Measur. 48, 192–194 (1999)CrossRefGoogle Scholar
- 54.W. Beer et al., Status of METAS watt balance experiment, IEEE Trans. Instrum. Measur. 52, 626–630 (2003)CrossRefGoogle Scholar
- 55.R.L. Steiner, E.R. Williams, D.B. Newell, R. Liu, Towards an electronic kilogram: an improved measurement of the Planck constant and electron mass, Metrologia 42, 431–441 (2005)ADSCrossRefGoogle Scholar
- 56.S.K. Mukherjee, A. Choudhary, Unit of mass-New definition, ISI Bull. 24, 288 (1973)Google Scholar
- 57.B.N. Taylor, P.J. Mohr, On the definition of the kilogram, Metrologia 36, 63–64 (1999)ADSCrossRefGoogle Scholar
- 58.B.N. Taylor, P.J. Mohr, The role of fundamental constants in the International System of Units (SI) present and future, IEEE Trans. Instrum, Measur. 50, 563–567 (2001)Google Scholar
- 59.J.L. Flowers, B.W. Petley, The kilogram redefinition- an interim solution, Metrologia 42, L31–L34 (2005)ADSCrossRefGoogle Scholar
- 60.V.E. Bower, R.S. Davis, J. Res. Natl. Bur. Stand. 85, 175 (1980)Google Scholar
- 61.W. Schwitz, B. Jeckelmann, P. Richard, Towards the a new kilogram definition based on a fundamental constant, CR Phys. 5, 881–882 (2004)ADSGoogle Scholar
- 62.W.K. Clothier, G.J. Sloggett, H. Bairnsfather, M.F. Currey, D.J. Benjamin, A determination of the Volt, Metrologia 26, 9 (1989)ADSCrossRefGoogle Scholar
- 63.The International System of Units (SI), BIPM, Pavillon de Bretuil (Parc de Saint Cloud), Sevres, F-92310, France ParisGoogle Scholar