Cellular Differentiation in the In Vitro Raised Zygotic Embryo Callus of Boerhaavia diffusa L. to Produce the Flavonoid, Kaempferol

  • G. Chaudhary
  • D. Rani
  • R. Raj
  • M. M. Srivastava
  • P. K. Dantu

Abstract

Torpedo shaped embryos dissected from young fruits of Boerhaavia diffusa were cultured in semisolid MS basal medium supplemented with 2,4-D and BAP either alone or in various combinations. Callus from the embryos was transferred to fresh medium of the same composition after 20 days. The callus when initiated was creamish, compact to friable and fast growing. With passage of time the callus growth became slow and the callus became brown. Cytological studies revealed that at the end of 30 days in culture most of the callus was composed of elongated cells which were either nucleated or enucleated. Light microscopic studies indicated depositions on the surface of these cells. The brown callus was dried and extracted in 50 % ethanol. The extract was re-extracted with pure ethanol. UV scanning of the ethanolic extract gave a twin absorption peak typical of flavonoids. HPTLC of the extract performed against kaempferol as standard revealed the presence of kaempferol at 1.53 μg/mg of callus. The study demonstrated that callus cells growing in vitro are able to differentiate and activate the flavonoid biosynthetic pathway resulting in the production of the important flavonoid, kaempferol.

Keywords

Flavonoid Production Callus Extract Torpedo Shaped Embryo Brown Callus Meritorious Student 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.B. Harborne, H. Baxter and G.P. Moss; In Phytochemical dictionary handbook of bioactive compounds from plants (2nd ed.). London (1999): Taylor and Francis.Google Scholar
  2. 2.
    L.H. Wang and W.H. Li; Pharma.Chem. J. 41 (2007) 46.CrossRefGoogle Scholar
  3. 3.
    B. Havsteen; Biochem. Pharmacol. 32 (1983) 1141.CrossRefGoogle Scholar
  4. 4.
    R.J. Gryglewski, R. Korbut and J. Robak; J. Sueis. Biochem. Pharmacol. 36 (1987) 317.CrossRefGoogle Scholar
  5. 5.
    E.J.R. Middleton and C. Kandaswami; Biochem. Pharmacol. 43 (1992) 1167.CrossRefGoogle Scholar
  6. 6.
    N.C. Cooks; S. Samman; J. Nutr. Biochem. 7 (1996) 66.CrossRefGoogle Scholar
  7. 7.
    Y. Wang, J. Cao, J.H. Weng and S. Zeng; J. Pharma. Biomed. Anal. 39 (2005) 328.CrossRefGoogle Scholar
  8. 8.
    W.W. Huang, Y.J. Chiu, M.J. Fan, H.F. Lu, H.F. Yeh, K.H. Li, P.Y. Chen, J.G. Chung and J.S. Yang; Mol. Nutr. Food Res. 54 (2010) 1585. CrossRefGoogle Scholar
  9. 9.
    H.A. Jung, J.J. Woo, M.J. Jung, G.S. Hwang and J.S. Choi; Arch. Pharma. Res. 32 (2009) 1379.CrossRefGoogle Scholar
  10. 10.
    C. Prouillet, J.C. Maziere, C. Maziere, A. Wattel, M. Brazier and S. Kamel; Biochem. Pharma. 67 (2004) 1307.CrossRefGoogle Scholar
  11. 11.
    D. Puppala, C. G. Gairola and H.I. Swanson; Carcinogenesis. 28 (2007) 639.CrossRefGoogle Scholar
  12. 12.
    Y.C. Liang, Y.T. Huang, S.H. Tsai, S.Y. Shiau, C.F. Chen and J.K. Lin; Carcinogenesis 20 (1999) 1945.CrossRefGoogle Scholar
  13. 13.
    Y.H. Lim, I.H. Kim, J.J. Seo and J.K. Kim; J. Microbiol. Biotechnol. 16 (2006) 1977.Google Scholar
  14. 14.
    K.R. Kirtikar and B.D. Basu; Indian Medicinal Plants. Vol. III. 2nd Edition. Lalit Mohan Basu, Allahabad, Uttar Pradesh, India. (1956) p. 2045.Google Scholar
  15. 15.
    A.K.S. Rawat, S. Mehrotra, S.K. Tripathi and U. Shama; J. Ethnopharmacol. 56 (1997) 61.CrossRefGoogle Scholar
  16. 16.
    B.M. Goyal, P. Bansal, V. Gupta, S. Kumar, R. Singh and M. Maithani; Int. J. Pharm. Sci. Drug Res. 2 (2010) 17.Google Scholar
  17. 17.
    D.M. Pereira, J. Faria, L. Gaspar, P. Valentao and P.B. Andrade; Food Chem. Toxicol. 47 (2009) 2142.CrossRefGoogle Scholar
  18. 18.
    S. Roberts and M. Kolewe; Nature Biotech. 28 (2010) 1175.CrossRefGoogle Scholar
  19. 19.
    E.K. Lee, Y.W. Jin, J.H. Park, Y.M. Yoo, S.M. Hong, R. Amir, Z. Yan, E. Kwon, A. Elfick, S. Tomlinson, F. Halbritter, T. Waibel, B.W. Yun and G.J. Loake; Nature Biotech. 28 (2010) 1213.CrossRefGoogle Scholar
  20. 20.
    T. Murashige and F. Skoog. Physiol. Plant. 15 (1962) 473.CrossRefGoogle Scholar
  21. 21.
    Rosidah, M.F. Yam, A. Sadikun, M. Ahmad, G.A. Akowuah and M.Z. Asmavi. J. Ethnopharmacol. 123 (2009) 244.CrossRefGoogle Scholar
  22. 22.
    M. Luczkiewics; D. Glod. Plant Sci. 165 (2003) 1101.CrossRefGoogle Scholar
  23. 23.
    M.S. Narayan, R. Thimmaraju and N. Bhagyalakshmi; Process Biochem. 40 (2005) 351.CrossRefGoogle Scholar
  24. 24.
    N. Maurmann, C.M.B. Decarvalho, A.L. Silva, A.G. Fett-Neto, G.L. Vonposer and S.B. Rech; In vitro Cell. Dev. Pl. 42 (2006)5.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • G. Chaudhary
    • 1
  • D. Rani
    • 1
  • R. Raj
    • 2
  • M. M. Srivastava
    • 2
  • P. K. Dantu
    • 1
  1. 1.Department of Botany, Faculty of ScienceDayalbagh Educational Institute (Deemed University)Dayalbagh, AgraIndia
  2. 2.Department of Chemistry, Faculty of ScienceDayalbagh Educational Institute (Deemed University)Dayalbagh, AgraIndia

Personalised recommendations