Next Generation of Photovoltaics pp 131-155

Part of the Springer Series in Optical Sciences book series (SSOS, volume 165) | Cite as

Surface Plasmon Polaritons in Metallic Nanostructures: Fundamentals and Their Application to Thin-Film Solar Cells

Chapter

Abstract

A surface plasmon polariton is a hybrid excitation where the electromagnetic field is resonantly coupled to a free carrier oscillation in noble metals. Once excited, a large enhancement of the local electromagnetic field and the amount of scattered light can be observed. Since both properties are beneficial for the purpose ofphoton management, in the past several years an increasing share of research was devoted to exploit such effects in solar cells. In this contribution, we review the fundamentals of surface plasmon polaritons and outline different approaches how to incorporate metallic nanostructures into solar cells. We detail to which extent they are useful to enhance the solar cell efficiency and describe different schemes for their experimental implementation. Emphasis is put on thin-film solar cells, since in this class of solar cells metallic nanostructures may have the largest impact. This chapter is written with the intention to make researchers from either the field of plasmonics or the field of photovoltaics familiar with their respective counterpart to foster research in this applied domain.

References

  1. 1.
    P. Würfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts, 2nd edn. (Wiley, Berlin, 2009)Google Scholar
  2. 2.
    A. Martí, A. Luque, Next generation photovoltaics, 1st edn. (IOP Publishing Ltd, Bristol, 2004)CrossRefGoogle Scholar
  3. 3.
    J. Nelson, The Physics of Solar Cells, 1st edn. (Imperial College Press, London, 2003)Google Scholar
  4. 4.
    S.A. Maier, Plasmonics: Fundamentals and Applications, 1st edn. (Springer, Berlin, 2007)Google Scholar
  5. 5.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    C. Daboo, M.J. Baird, H.P. Hughes, N. Apsley, M.T. Emeny, Thin Solid Films 20, 9 (1991)CrossRefGoogle Scholar
  7. 7.
    M. Westphalen, U. Kreibig, J. Rostalski, H. Lth, D. Meissner, Thin Solid Films 61, 97 (2000)Google Scholar
  8. 8.
    A. Shalav, B.S. Richards, T. Trupke, K.W. Krämer, H.U. Güdel, Appl. Phys. Lett. 86, 013505 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    T. Trupke, M. A. Green, P. Würfel, J. Appl. Phys. 92, 4117 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    T. Trupke, M. A. Green, P. Würfel, J. Appl. Phys. 92, 1668 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    C. Strümpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C.D. Canizo, I. Tobias, Sol. Energ. Mater. Sol. Cell. 91, 238 (2007)CrossRefGoogle Scholar
  12. 12.
    E. Klampaftis, D. Ross, K. R. McIntosh, B. S. Richards, Sol. Energ. Mater. Sol. Cell. 93, 1182 (2009)CrossRefGoogle Scholar
  13. 13.
    J.N. Farahani, D.W. Pohl, H.-J. Eisler, B. Hecht, Phys. Rev. Lett. 95, 017402 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G.v. Plessen, F. Lederer, Phys. Stat. Sol. (a) 205, 2844 (2008)Google Scholar
  16. 16.
    R. Esteban, M. Laroche, J.-J. Greffet, J. Appl. Phys. 105, 033107 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    A. Luque, A. Martí, M.J. Mendes, I. Tobías, J. Appl. Phys. 104, 113118 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    B.S. Richards, Sol. Energ. Mater. Sol. Cell. 90, 1189 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    M.J. Mendes, A. Luque, I. Tobías, A. Martí, Appl. Phys. Lett. 95, 071105 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    D. Derkacs, W.V. Chen, P.M. Matheu, S.H. Lim, P.K.L. Yu, E.T. Yu, Appl. Phys. Lett. 93, 091107 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    S. Hayashi, K. Kozaru, K. Yamamoto, Solid State Commun. 79, 763 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    T. Kume, S. Hayashi, H. Ohkuma, K. Yamamoto, Jpn. J. Appl. Phys. 34, 6448 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    O. Stenzel, A. Stendal, K. Voigtsberger, C. von Borczyskowski, Sol. Energ. Mater. Sol. Cells 37, 337 (1995)CrossRefGoogle Scholar
  24. 24.
    O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, C. von Borczyskowski, J. Phys. D Appl. Phys. 28, 2154 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, D. Meissner, Sol. Energ. Mater. Sol. Cell. 61, 97 (2000)CrossRefGoogle Scholar
  26. 26.
    K. Tvingstedt, N.-K. Persson, O. Inganäs, A. Rahachou, I.V. Zozoulenko, Appl. Phys. Lett. 91, 113514 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    C. Hägglund, M. Zäch, B. Kasemo, Appl. Phys. Lett. 92, 013113 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    F.-C. Chen, J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, M.H. Huang, Appl. Phys. Lett. 95, 013305 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    D. Duché, P. Torchio, L. Escoubas, F. Monestier, J.-J. Simon, F. Flory, G. Mathian, Sol. Energ. Mater. Sol. Cell. 93, 1377 (2009)CrossRefGoogle Scholar
  30. 30.
    D.E. Carlson, C.R. Wronski, Appl. Phys. Lett. 28, 671 (1976)ADSCrossRefGoogle Scholar
  31. 31.
    J. Meier, H. Keppner, S. Dubail, U. Kroll, P. Torres, P. Ziegler, J.A.A. Selvan, J. Cuperus, D. Fischer, A. Shah, Mater. Res. Soc. Symp. Proc. 507, 139 (1999)CrossRefGoogle Scholar
  32. 32.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovolt. Res. Appl. 17, 85 (2009)CrossRefGoogle Scholar
  33. 33.
    L. Schirone, G. Sotgiu, F.P. Califano, Thin Solid Films 297, 296 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    C. Heine, R.H. Morf, Appl. Opt. 34, 2476 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    L. Zeng, P. Bermel, Y. Yi, B.A. Alamariu, K.A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, L.C. Kimerling, Appl. Phys. Lett. 93, 221105 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    C. Rockstuhl, F. Lederer, K. Bittkau, R. Carius, Appl. Phys. Lett. 91, 171104 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    S. Fahr, C. Rockstuhl, F. Lederer, Appl. Phys. Lett. 92, 171114 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    C. Rockstuhl, S. Fahr, F. Lederer, T. Beckers, K. Bittkau, R. Carius, Appl. Phys. Lett. 93, 061105 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    G. Mie, Ann. Phys. 330, 77 (1908)CrossRefGoogle Scholar
  40. 40.
    J.P. Kottmann, O.J.F. Martin, D.R. Smith, S. Schultz, Phys. Rev. B 64, 235402 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    U. Hohenester, J.R. Krenn, Phys. Rev. B 72, 195429 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    C. Rockstuhl, M.G. Salt, H.P. Herzig, J. Am. Soc. Am. A 20, 1969 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    J.D. Jackson, Classical Electrodynamics (Wiley, NY, 1999)MATHGoogle Scholar
  44. 44.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1970)ADSCrossRefGoogle Scholar
  45. 45.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)Google Scholar
  46. 46.
    C. Hägglund, B. Kasemo, Opt. Express 17, 11944 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    Y.A. Akimov, W.S. Koh, K. Ostrikov, Opt. Express 17, 10195 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    H. Raether, Surface Plasmons (Springer, Berlin, 1988)Google Scholar
  49. 49.
    B.E.A. Saleh, M.C. Teich, Grundlagen der Photonik, 2nd edn. (Wiley, Berlin, 2008)Google Scholar
  50. 50.
    A. Otto, Zeitschrift für Physik 216, 398 (1968)ADSCrossRefGoogle Scholar
  51. 51.
    E. Kretschmann, H. Raether, Z. Naturforsch. 23A, 2135 (1968)Google Scholar
  52. 52.
    R.H. Ritchie, E.T. Arakawa, J.J. Cowan, R.N. Hamm, Phys. Rev. Lett. 21, 1530 (1968)ADSCrossRefGoogle Scholar
  53. 53.
    B.T. Draine, P. J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994)ADSCrossRefGoogle Scholar
  54. 54.
    C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House Inc., Boston, 1990)Google Scholar
  55. 55.
    J.M. Bendickson, E. Glytsis, T.K. Gaylord, J. Opt. Soc. Am. A 18, 1487 (2001)ADSCrossRefGoogle Scholar
  56. 56.
    J.R. Cole, N.J. Halas, Appl. Phys. Lett. 89, 153120 (2006)ADSCrossRefGoogle Scholar
  57. 57.
    M.G. Moharam, E.B. Grann, D.A. Pommet, T.K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995)ADSCrossRefGoogle Scholar
  58. 58.
    L. Li, J. Opt. Soc. Am. A 14, 2758 (1997)ADSCrossRefGoogle Scholar
  59. 59.
    J. Chandezon, D. Maystre, G. Raoult, J. Opt. 11, 235 (1980)ADSCrossRefGoogle Scholar
  60. 60.
    P. Monk, Finite Element Methods for Maxwell’s Equations (Oxford University Press, NY, 2003)MATHCrossRefGoogle Scholar
  61. 61.
    A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Inc., Boston, 2005)Google Scholar
  62. 62.
    J.P. Berenger, J. Comp. Phys. 114, 185 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
  63. 63.
    A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, G. Burr, Opt. Lett. 31, 2972 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    H.R. Stuart, D.G. Hall, Appl. Phys. Lett. 73, 3815 (1998)ADSCrossRefGoogle Scholar
  65. 65.
    E. Moulin, P. Luo, B. Pieters, J. Sukmanowski, J. Kirchhoff, W. Reetz, T. Müller, R. Carius, F.-X. Royer, H. Stiebig, Appl. Phys. Lett. 95, 033505 (2009)ADSCrossRefGoogle Scholar
  66. 66.
    C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, Appl. Phys. Lett. 92, 053110 (2008)ADSCrossRefGoogle Scholar
  67. 67.
    H.R. Stuart, D.G. Hall, Appl. Phys. Lett. 69, 093103 (1996)CrossRefGoogle Scholar
  68. 68.
    D. Derkacs, S.H. Lim, P. Matheu, W. Mar, E.T. Yu, Appl. Phys. Lett. 89, 2327 (2006)CrossRefGoogle Scholar
  69. 69.
    J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, B. Rech, J. Appl. Phys. 92, 1427 (2002)Google Scholar
  70. 70.
    K. Nakayama, K. Tanabe, H.A. Atwater, Appl. Phys. Lett. 93, 121904 (2008)ADSCrossRefGoogle Scholar
  71. 71.
    K.R. Catchpole, A. Polman, Appl. Phys. Lett. 93, 191113 (2008)ADSCrossRefGoogle Scholar
  72. 72.
    S. Mokkapati, F.J. Beck, A. Polman, K.R. Catchpole, Appl. Phys. Lett. 95, 053115 (2009)ADSCrossRefGoogle Scholar
  73. 73.
    C. Rockstuhl, S. Fahr, F. Lederer, J. Appl. Phys. 104, 123102 (2008)ADSCrossRefGoogle Scholar
  74. 74.
    C. Rockstuhl, F. Lederer, Appl. Phys. Lett. 94, 213102 (2009)ADSCrossRefGoogle Scholar
  75. 75.
    O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, H. Wagner, Sol. Energ. Mater. Sol. Cell. 62, 97 (2000)CrossRefGoogle Scholar
  76. 76.
    S.H. Lim, W. Mar, P. Matheu, D. Derkacs, E.T. Yu, J. Appl. Phys. 101, 104309 (2007)ADSCrossRefGoogle Scholar
  77. 77.
    F.J. Beck, A. Polman, K.R. Catchpole, J. Appl. Phys. 105, 114310 (2009)ADSCrossRefGoogle Scholar
  78. 78.
    R.A. Pala, J. White, E. Barnard, J. Liu, M.L. Brongersma, Adv. Mater. 21, 3504 (2009)CrossRefGoogle Scholar
  79. 79.
    A. Lambertz, A. Dasgupta, W. Reetz, A. Gordijn, R. Carius, F. Finger, in Proceedings of the 22. European Photovoltaic Solar Energy Conference (EU PVSEC), Milan, Italy, 3–7 Sep 2007Google Scholar
  80. 80.
    A. Bielawny, C. Rockstuhl, F. Lederer, R.B. Wehrspohn, Opt. Express 17, 8439 (2009)ADSCrossRefGoogle Scholar
  81. 81.
    P. Buehlmann, J. Bailat, D. Dominé, A. Billet, F. Meillaud, A. Feltrin, C. Ballif, Appl. Phys. Lett. 91, 143505 (2007)ADSCrossRefGoogle Scholar
  82. 82.
    A. Bielawny, J. Üpping, P.T. Miclea, R.B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, R. Carius, Phys. Stat. Sol. (a) 205, 2796 (2008)ADSCrossRefGoogle Scholar
  83. 83.
    P. Obermeyer, C. Haase, H. Stiebig, Appl. Phys. Lett. 92, 181102 (2008)ADSCrossRefGoogle Scholar
  84. 84.
    T. Söderström, F.-J. Haug, X. Niquille, V. Terrazzoni, C. Ballif, Appl. Phys. Lett. 94, 063501 (2009)ADSCrossRefGoogle Scholar
  85. 85.
    S. Fahr, C. Rockstuhl, F. Lederer, Appl. Phys. Lett. 95, 121105 (2009)ADSCrossRefGoogle Scholar
  86. 86.
    F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, C. Ballif, J. Appl. Phys. 104, 064509 (2008)ADSCrossRefGoogle Scholar
  87. 87.
    R.H. Franken, R.L. Stolk, H. Li, C.H.M. van der Werf, J.K. Rath, R.E.I. Schropp, J. Appl. Phys. 102, 014503 (2007)ADSCrossRefGoogle Scholar
  88. 88.
    V.E. Ferry, L.A. Sweatlock, D. Pacifici, H.A. Atwater, Nano Lett. 8, 4391 (2008)ADSCrossRefGoogle Scholar
  89. 89.
    T. Wakamatsu, K. Saito, Y. Sakakibara, H. Yokoyama, Jpn. J. Appl. Phys. 34, L1467 (1995)ADSCrossRefGoogle Scholar
  90. 90.
    N.C. Panoiu, R.M. Osgood Jr., Opt. Lett. 32, 2825 (2007)ADSCrossRefGoogle Scholar
  91. 91.
    T. Kume, S. Hayashi, K. Yamamoto, Jpn. J. Appl. Phys. 32, 1993 (1993)CrossRefGoogle Scholar
  92. 92.
    G.A. Chamberlain, Sol. Cell. 8, 47 (1983)ADSCrossRefGoogle Scholar
  93. 93.
    C.W. Tang, Appl. Phys. Lett. 48, 183 (1986)ADSCrossRefGoogle Scholar
  94. 94.
    H. Hoppe, N.S. Sariciftci, J. Mater. Chem. 19, 1924 (2004)ADSGoogle Scholar
  95. 95.
    A.J. Nozik, Physica E 14, 115 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Condensed Matter Theory and OpticsFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Institute of Condensed Matter Theory and OpticsFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations