Virtual Reality as a Surrogate Sensory Environment

  • Theodore W. Hall
  • Mojtaba Navvab
  • Eric Maslowski
  • Sean Petty
Part of the Intelligent Systems Reference Library book series (ISRL, volume 26)

Abstract

This chapter examines certain aspects of virtual reality systems that contribute to their utility as surrogate sensory environments. These systems aim to provide users with sensory stimuli that simulate other worlds. The fidelity of the simulation depends on the input data, the software, the display hardware, and the physical environment that houses it all. Robust highfidelity general-purpose simulation requires a collaborative effort of modelers, artists, programmers, and system administrators. Such collaboration depends on standards for modeling and data representation, but these standards lag behind the leading-edge capabilities of processors and algorithms. We illustrate this through a review of the evolution of a few of the leading standards and case studies of projects that adhered to them to a greater or lesser extent. Multi-modal simulation often requires multiple representations of elements to accommodate the various algorithms that apply to each mode – for example, alternative geometries for visualization, auralization, and collision detection. Tools and algorithms to assist in the extraction of these representations from common base data will expand the pool of high-quality multi-modal simulations. In the final analysis, the output stimuli depend on aspects of the display hardware and its physical setting that might not be adequately accounted for by idealistic algorithms. It is important to measure these actual stimuli in order to validate and fine-tune the simulation system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wernecke, J.: The Inventor Mentor: Programming Object-Oriented 3D Graphics with Open InventorTM, Release 2. Addison-Wesley, Reading Menlo-Park New-York Don-Mills Workingham Amsterdam Bonn Sydney Singapore Tokyo Madrid San-Juan Paris Seoul Milan Mexico-City Taipei (1994)Google Scholar
  2. 2.
    ISO/IEC: The Virtual Reality Modeling Language (ISO/IEC 14772-1:1997). International Organization for Standardization, Geneva (1997)Google Scholar
  3. 3.
    ISO/IEC: The Virtual Reality Modeling Language Amendment 1 – Enhanced Interoperability (ISO/IEC 14772-1:1997/Amd. 1:2002). International Organization for Standardization, Geneva (2002)Google Scholar
  4. 4.
    ISO/IEC: Extensible 3D (X3D) (ISO/IEC 19775-1:2008). International Organization for Standardization, Geneva (2008)Google Scholar
  5. 5.
    Arnaud, R., Barnes, M.C.: COLLADATM: Sailing the Gulf of 3D Digital Content Creation. AK Peters, Wellesley (2006)Google Scholar
  6. 6.
    Barnes, M., Finch, E.L. (eds.): COLLADA – Digital Asset Schema Release 1.5.0 Specification. The Khronos Group and Sony Computer Entertainment, Clearlake-Park Tokyo Foster-City London (2008)Google Scholar
  7. 7.
    Noisternig, M., Katz, B., Siltanen, S., Savioja, L.: Framework for Real-Time Auralization in Architectural Acoustics. Acta Acustica united with Acustica 94, 1000–1015 (2008)CrossRefGoogle Scholar
  8. 8.
    Jacquemin, C.: Virtual Choreographer Reference Guide (version 1.4). LIMSI-CNRS and University Paris 11 (2007)Google Scholar
  9. 9.
    NVIDIA Corporation: PhysXTM. NVIDIA Corporation, Santa Clara (2008)Google Scholar
  10. 10.
    Asakawa, C., Takagi, H., Ino, S., Ifukube, T.: Auditory and Tactile Interfaces for Representing the Visual Effects on the Web. In: Hanson, V.L., Jacko, J.A. (eds.) Proceedings of the Fifth International ACM Conference on Assistive Technologies (ASSETS 2002), pp. 65–72. Association for Computing Machinery, New York (2002)CrossRefGoogle Scholar
  11. 11.
    Davide, F., Holmberg, M., Lundström, I.: Virtual Olfactory Interfaces: Electronic Noses and Olfactory Displays. In: Riva, G., Davide, F. (eds.) Communications Through Virtual Technology: Identity, Community, and Technology in the Internet Age, pp. 193–220. IOS Press, Amsterdam (2001)Google Scholar
  12. 12.
    Başdoğan, Ç., Loftin, R.B.: Multimodal Display Systems: Haptic, Olfactory, Gustatory, and Vestibular. In: Nicholson, D., Schmorrow, D., Cohn, J. (eds.) The PSI Handbook of Virtual Environments for Training and Education – Developments for the Military and Beyond: VE Components and Training Technologies, vol. 2, pp. 116–135. ABC-CLIO, Santa Barbara (2009)Google Scholar
  13. 13.
    Christensen, C.L.: Odeon Room Acoustics Program Version 10.1: Industrial, Auditorium and Combined Editions. Odeon A/S, Lyngby (2009)Google Scholar
  14. 14.
    Kaplanyan, A., Dachsbacher, C.: Cascaded Light Propagation Volumes for Real-Time Indirect Illumination. In: Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D 2010), pp. 99–107. Association for Computing Machinery, New York (2010)Google Scholar
  15. 15.
    Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A Hierarchical Structure for Rapid Interference Detection. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1996), pp. 171–180. Association for Computing Machinery, New York (1996)CrossRefGoogle Scholar
  16. 16.
    Lien, J.M., Amato, N.M.: Approximate Convex Decomposition of Polyhedra. In: Lévy, B., Manocha, D. (eds.) Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling (SPM 2007), pp. 121–131. Association for Computing Machinery, New York (2007)CrossRefGoogle Scholar
  17. 17.
    Huang, M.P., Himle, J., Beier, K.P., Alessi, N.E.: Comparing Virtual and Real Worlds for Acrophobia Treatment. In: Westwood, J.D., Hoffman, H.M., Stredney, D., Weghorst, S.J. (eds.) Medicine Meets Virtual Reality: Art Science, Technology: Healthcare (R)evolution, pp. 175–179. IOS Press, Amsterdam (1998)Google Scholar
  18. 18.
    Beier, K.P.: Web-Based Virtual Reality in Design and Manufacturing Applications. In: Bertram, V. (ed.) Proceedings of the 1st International Conference on Computer Applications and Information Technology in the Maritime Industries (COMPIT 2000), Potsdam, pp. 45–55 (2000)Google Scholar
  19. 19.
    Beier, K.P.: Web-Based Virtual Reality in Design and Manufacturing Applications. Hansa International Maritime Journal 137(5), 42–47 (2000)Google Scholar
  20. 20.
    Wilkerson, W., Avstreih, D., Gruppen, L., Beier, K.P., Woolliscroft, J.: Using Immersive Simulation for Training First Responders for Mass Casualty Incidents. Academic Emergency Medicine 15(11), 1152–1159 (2008)CrossRefGoogle Scholar
  21. 21.
    Andreatta, P.B., Maslowski, E., Petty, S., Shim, W., Marsh, M., Hall, T.W., Stern, S., Frankel, J.: Virtual Reality Triage Training Provides a Viable Solution for Disaster-Preparedness. Academic Emergency Medicine 17(8), 870–876 (2010)CrossRefGoogle Scholar
  22. 22.
    Davis, W.L., Ohno, Y.: Evaluation of Color Difference Formulae for Color Rendering Metrics. In: Proceedings of the ISCC/CIE Expert Symposium. Inter-Society Color Council and Commission Internationale de l’Eclairage, Reston and Vienna (2006)Google Scholar
  23. 23.
    Okamoto, T., Katz, B.F.G., Noisternig, M., Iwaya, Y., Suzuki, Y.: Implementation of Real-Time Room Auralization Using a Surrounding 157 Loudspeaker Array. In: Suzuki, Y., Brungart, D., Kato, H., Iida, K., Cabrera, D., Iwaya, Y. (eds.) Proceedings of the International Workshop on the Principles and Applications of Spatial Hearing, World Scientific, Singapore (2009)Google Scholar

Copyright information

© IFIP 2012

Authors and Affiliations

  • Theodore W. Hall
    • 1
  • Mojtaba Navvab
    • 1
  • Eric Maslowski
    • 1
  • Sean Petty
    • 1
  1. 1.University of MichiganAnn ArborUSA

Personalised recommendations