Fungal Life in the Dead Sea

Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 53)

Abstract

The waters of the Dead Sea currently contain about 348 g/l salts (2 M Mg2+, 0.5 M Ca2+, 1.5 M Na+, 0.2 M K+, 6.5 M Cl, 0.1 M Br). The pH is about 6.0. After rainy winters the surface waters become diluted, triggering development of microbial blooms. The 1980 and 1992 blooms were dominated by the unicellular green alga Dunaliella and red Archaea. At least 70 species (in 26 genera) of Oomycota (Chromista), Mucoromycotina, Ascomycota, and Basidiomycota (Fungi) were isolated from near-shore localities and offshore stations, including from deep waters. Aspergillus and Eurotium were most often recovered. Aspergillus terreus, A. sydowii, A. versicolor, Eurotium herbariorum, Penicillium westlingii, Cladosporium cladosporioides, C. sphaerospermum, C. ramnotellum, and C. halotolerans probably form the stable core of the community. The species Gymnascella marismortui may be endemic. Mycelia of Dead Sea isolates of A. versicolor and Chaetomium globosum remained viable for up to 8 weeks in Dead Sea water; mycelia of other species survived for many weeks in 50% Dead Sea water. Many isolates showed a very high tolerance to magnesium salts. There is no direct proof that fungi contribute to the heterotrophic activity in the Dead Sea, but fungi may be present at least locally and temporarily, and their enzymatic activities such as amylase, protease, and cellulase may play a role in the lake’s ecosystem.

References

  1. Beyth M (1980) Recent evolution and present stage of Dead Sea brines. In: Nissenbaum A (ed) Hypersaline brines and evaporitic environments. Elsevier, AmsterdamGoogle Scholar
  2. Bodaker I, Sharon I, Suzuki MT, Reingersch R, Shmoish M, Andreishcheva E, Sogin ML, Rosenberg M, Belkin S, Oren A, Béjà O (2010) The dying Dead Sea: comparative community genomics in an increasingly extreme environment. ISME J 4:399–407PubMedCrossRefGoogle Scholar
  3. Brown AD (1990) Microbial water stress physiology. Principles and perspectives. Wiley, ChichesterGoogle Scholar
  4. Buchalo AS (2003) Fungi in saline water bodies. In: Nevo E, Oren A, Wasser SP (eds) Fungal life in the Dead Sea. A.R.G. Gantner Verlag, RuggellGoogle Scholar
  5. Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP (1998) Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc R Soc Lond B 265:1461–1465CrossRefGoogle Scholar
  6. Buchalo AS, Wasser SP, Molitoris HP, Volz PA, Kurchenko I, Lauer I, Rawal B (1999) Species diversity and biology of fungi isolated from the Dead Sea. In: Wasser SP (ed) Evolutionary theory and processes: modern perspectives. Papers in honour of Eviatar Nevo. Kluwer Academic Publishers, DordrechtGoogle Scholar
  7. Buchalo AS, Nevo E, Wasser SP, Molitoris HP, Oren A, Volz PA (2000a) Fungi discovered in the Dead Sea. Mycol Res 104:132–133Google Scholar
  8. Buchalo AS, Nevo E, Wasser SP, Volz PA (2000b) Newly discovered halophilic fungi in the Dead Sea. In: Seckbach J (ed) Journey to diverse microbial worlds. Kluwer Academic Publishers, DordrechtGoogle Scholar
  9. Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005a) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234PubMedCrossRefGoogle Scholar
  10. Butinar L, Zalar P, Frisvad JC, Gunde-Cimerman N (2005b) The genus Eurotium – members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol Ecol 51:155–166PubMedCrossRefGoogle Scholar
  11. Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N (2005c) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 1:73–79CrossRefGoogle Scholar
  12. Butinar L, Frisvad JC, Gunde-Cimerman N (2011) Hypersaline waters – a potential source of foodborne toxigenic Aspergilli and Penicillia. FEMS Microbiol Ecol 77:186–199PubMedCrossRefGoogle Scholar
  13. Cronin AD, Post FJ (1977) Report of a dematiaceous hyphomycete from the Great Salt Lake, Utah. Mycologia 69:846–847PubMedCrossRefGoogle Scholar
  14. Grishkan I, Nevo E, Wasser SP (2003) Soil micromycete diversity in the hypersaline Dead Sea coastal area, Israel. Mycol Progr 2:19–28CrossRefGoogle Scholar
  15. Grishkan I, Nevo E, Wasser SP (2004) Micromycetes from the saline Arubotaim Cave: Mount Sedom, The Dead Sea southwestern shore, Israel. J Arid Environ 57:431–443CrossRefGoogle Scholar
  16. Guiraud P, Steiman R, Seigle-Murandi F, Sage L (1995) Mycoflora of soil around the Dead Sea. II. Deuteromycetes (except Aspergillus and Penicillium). Syst Appl Microbiol 18:318–322CrossRefGoogle Scholar
  17. Guiraud P, Steiman R, Seigle-Murandi F, Sage L (1997) Exserohilum sodomii, a new species isolated from soil near the Dead Sea (Israel). Antonie van Leeuwenhoek 72:317–325PubMedCrossRefGoogle Scholar
  18. Gunde-Cimerman N, Zalar P, de Hoog GS, Plemenitaš A (2000) Hypersaline waters in salterns: natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240Google Scholar
  19. Gunde-Cimerman N, Frisvad JC, Zalar P, Plemenitaš A (2005) Halotolerant and halophilic fungi. In: Desmukh SK, Rai MK (eds) Biodiversity of fungi: their role in human life. Science Publishers, Enfield, NHGoogle Scholar
  20. Gunde-Cimerman N, Ramos J, Plemenitaš A (2009) Halotolerant and halophilic fungi. Mycol Res 113:1231–1241PubMedCrossRefGoogle Scholar
  21. Jin Y, Nevo E (2003) Osmoadaptation strategies of the Dead Sea fungi to hypersaline stress. In: Nevo E, Oren A, Wasser SP (eds) Fungal life in the Dead Sea. A.R.G. Gantner Verlag, RuggellGoogle Scholar
  22. Jin Y, Weining S, Nevo E (2005) A MARK gene from Dead Sea fungus confers stress tolerance to lithium salt and freezing-thawing: prospects for saline agriculture. Proc Natl Acad Sci U S A 102:18992–18997PubMedCrossRefGoogle Scholar
  23. Kis-Papo T, Grishkan I, Oren A, Wasser SP, Nevo E (2001) Spatiotemporal diversity of filamentous fungi in the hypersaline Dead Sea. Mycol Res 105:749–756CrossRefGoogle Scholar
  24. Kis-Papo T, Oren A, Wasser SP, Nevo E (2003a) Survival of spores of filamentous fungi in Dead Sea water. Microb Ecol 45:183–190PubMedCrossRefGoogle Scholar
  25. Kis-Papo T, Kirzhner V, Wasser SP, Nevo E (2003b) Evolution of genomic diversity and sex at extreme environments: fungal life under hypersaline Dead Sea stress. Proc Natl Acad Sci U S A 100:14970–14975PubMedCrossRefGoogle Scholar
  26. Kis-Papo T, Grishkan I, Gunde-Cimerman N, Oren A, Wasser SP, Nevo E (2003c) Spatiotemporal patterns of filamentous fungi in the Dead Sea. In: Nevo E, Oren A, Wasser SP (eds) Fungal life in the Dead Sea. A.R.G. Gantner Verlag, RuggellGoogle Scholar
  27. Kis-Papo T, Oren A, Wasser S, Nevo E (2003d) Physiological adaptations of Dead Sea fungi to the Dead Sea: survival of spores and vegetative cells. In: Nevo E, Oren A, Wasser SP (eds) Fungal life in the Dead Sea. A.R.G. Gantner Verlag, RuggellGoogle Scholar
  28. Kis-Papo T, Oren A, Nevo E (2003e) Genetic diversity of filamentous fungi under hypersaline stress in the Dead Sea. In: Nevo E, Oren A, Wasser SP (eds) Fungal life in the Dead Sea. A.R.G. Gantner Verlag, RuggellGoogle Scholar
  29. Kritzman G (1973) Observations on the microorganisms in the Dead Sea. M.Sc. Dissertation, The Hebrew University of Jerusalem (in Hebrew)Google Scholar
  30. Kushner DJ (1978) Life at high salt and solute concentrations: halophilic bacteria. In: Kushner DJ (ed) Microbial life in extreme environments. Academic Press, New YorkGoogle Scholar
  31. Molitoris HP, Buchalo AS, Kurchenko I, Nevo E, Rawal BS, Wasser SP, Oren A (2000) Physiological diversity of the first filamentous fungi isolated from the hypersaline Dead Sea. In: Hyde DK, Ho WH, Pointing SB (eds) Aquatic mycology across the millennium, vol 5. Fungal Diversity Press, Hong Kong, pp 55–70Google Scholar
  32. Nevo E, Oren A, Wasser SP (eds) (2003) Fungal life in the Dead Sea. A.R.G. Gantner Verlag, RuggellGoogle Scholar
  33. Oren A (1988) The microbial ecology of the Dead Sea. In: Marshall KC (ed) Advances in microbial ecology, vol 10. Plenum Publishing Company, New YorkGoogle Scholar
  34. Oren A (1993) The Dead Sea – alive again. Experientia 49:518–522CrossRefGoogle Scholar
  35. Oren A (1997) Microbiological studies in the Dead Sea: 1892–1992. In: Niemi T, Ben-Avraham Z, Gat JR (eds) The Dead Sea – the lake and its setting. Oxford University Press, New YorkGoogle Scholar
  36. Oren A (1999) Microbiological studies in the Dead Sea: future challenges toward the understanding of life at the limit of salt concentrations. Hydrobiologia 405:1–9CrossRefGoogle Scholar
  37. Oren A (2000) Biological processes in the Dead Sea as influenced by short-term and long-term salinity changes. Arch Hydrobiol Spec Issues Adv Limnol 55:531–542Google Scholar
  38. Oren A (2003a) Physical and chemical limnology of the Dead Sea. In: Nevo E, Oren A, Wasser SP (eds) Fungal life in the Dead Sea. A.R.G. Gantner Verlag, RuggellGoogle Scholar
  39. Oren A (2003b) Biodiversity and community dynamics in the Dead Sea: Archaea, bacteria and eucaryotic algae. In: Nevo E, Oren A, Wasser SP (eds) Fungal life in the Dead Sea. A.R.G. Gantner Verlag, RuggellGoogle Scholar
  40. Oren A, Gurevich P (1995) Dynamics of a bloom of halophilic archaea in the Dead Sea. Hydrobiologia 315:149–158CrossRefGoogle Scholar
  41. Oren A, Gurevich P, Anati DA, Barkan E, Luz B (1995) A bloom of Dunaliella parva in the Dead Sea in 1992: biological and biogeochemical aspects. Hydrobiologia 297:173–185CrossRefGoogle Scholar
  42. Oren A, Gavrieli I, Gavrieli J, Kohen M, Lati J, Aharoni M (2005) Microbial communities in the Dead Sea – past, present and future. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, DordrechtGoogle Scholar
  43. Pitt J, Hocking AD (1997) Fungi and food spoilage, 2nd edn. Blackie Academic & Professional, LondonCrossRefGoogle Scholar
  44. Rhodes ME, Fitz-Gibbon S, Oren A, House CH (2010) Amino acid signatures of salinity on an environmental scale with a focus on the Dead Sea. Environ Microbiol, in press.Google Scholar
  45. Sonjak S, Bukay YG, Gunde-Cimerman N (2010) Magnesium tolerant fungi from the bitterns. Meeting of the ISHAM Working groups on Black Yeasts and Chromoblastomycosis, Ljubljana, May 14–16, 2010. http://blackyeast2010.bf.uni-lj.si/lectures. Accessed 18 Nov 2010
  46. Steiman R, Guiraud P, Sage L, Seigle-Murandi F (1994) New strains from Israel in the Aspergillus niger group. Syst Appl Microbiol 17:620–624CrossRefGoogle Scholar
  47. Steiman R, Guiraud P, Sage L, Seigle-Murandi F, Lafond JL (1995) Mycoflora of soil around the Dead Sea. I. Ascomycetes (including Aspergillus and Penicillium), Basidiomycetes, Zygomycetes. Syst Appl Microbiol 18:310–317CrossRefGoogle Scholar
  48. Steiman R, Guiraud P, Seigle-Murandi F, Sage L (1996) Bipolaris israeli sp. nov. from Israel: description and physiological features. Syst Appl Microbiol 19:182–190CrossRefGoogle Scholar
  49. Steiman R, Guiraud P, Sage L, Seigle-Murandi F, Lafond JL (1997) Soil mycoflora from the Dead Sea oases of Ein Gedi and Einot Zuqim (Israel). Antonie van Leeuwenhoek 72:261–270PubMedCrossRefGoogle Scholar
  50. Tresner HD, Hayes JA (1971) Sodium chloride tolerance of terrestrial fungi. Appl Microbiol 22:210–213PubMedGoogle Scholar
  51. Volz PA, Wasser SP (1995) Soil micromycetes from selected areas of Israel. Israel J Plant Sci 43:281–290Google Scholar
  52. Wasser SP, Grishkan I, Kis-Papo T, Buchalo AS, Volz PA, Gunde-Cimerman N, Zalar P, Nevo E (2003) Species diversity of the Dead Sea fungi. In: Nevo E, Oren A, Wasser SP (eds) Fungal life in the Dead Sea. A.R.G. Gantner Verlag, RuggellGoogle Scholar
  53. Zalar P, de Hoog GS, Schroers H-J, Frank JM, Gunde-Cimerman N (2005a) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie van Leeuwenhoek 87:311–328PubMedCrossRefGoogle Scholar
  54. Zalar P, Kocuvan MA, Plemenitaš A, Gunde-Cimerman N (2005b) Halophilic black yeasts colonize wood immersed in hypersaline water. Bot Mar 48:323–326CrossRefGoogle Scholar
  55. Zalar P, de Hoog GS, Schroers H-J, Crous J, Groenewald JZ, Gunde-Cimerman N (2007) Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud Mycol 58:157–183PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Plant and Environmental Sciences, The Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Biology DepartmentUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations