Speciation of Uranium in Seepage and Pore Waters of Heavy Metal-Contaminated Soil

  • Nils Baumann
  • Thuro Arnold
  • Martin Lonschinski
Part of the Soil Biology book series (SOILBIOL, volume 31)


Time-resolved laser-induced fluorescence spectroscopy (TRLFS) is a very helpful tool with an extremely low detection limit for analyzing speciation of certain radioactive heavy metal ions like uranium(VI). Thus this technique is preferentially appropriate for detection of speciation from that ions in environmental relevant concentrations. So TRLFS can be useful in safety assessment concerning migration behavior of radioactive elements. In this chapter, TRLFS was used to analyze the uranium speciation in naturally occurring seepage water samples, and in soil water samples, all samples collected from test site “Gessenwiese” close to Ronneburg in Eastern Thuringia (Germany). This test site was installed as a part of a research program of the Friedrich Schiller University Jena for investigations within the area of recultivated former uranium mining heaps. The TRLFS measurements on water samples collected within test site Gessenwiese revealed that the uranium speciation in that seepage water is dominated by the hydrolyzed and monomer uranium(VI) sulfate species UO2SO4(aq). The results presented here are a convincing example for the suitability of TRFLS in analyzing the speciation of uranium from naturally occurring water samples with pH values between 3.2 and 4.0.


Inductively Couple Plasma Mass Spectrometry Acid Mining Drainage Surface Water Sample Seepage Water Pore Water Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the EU for funding UMBRELLA, GA No 226870, project within FP7 topic “Recovery of degraded soil resources,” and the Bundesministerium für Bildung und Forschung (BMBF), Project No 02NUK015F also for support, and E. Kothe and G. Büchel (both Friedrich-Schiller Universität Jena) for getting access to test site “Gessenwiese.”


  1. Amayri S, Arnold T, Foerstendorf H, Geipel G, Bernhard G (2004a) Spectroscopic characterization of synthetic becquerelite, Ca[(UO2)6O4(OH)6]·8H2O, and swartzite, CaMg[UO2(CO3)3]·12H2O. Can Mineral 42(4):953–962CrossRefGoogle Scholar
  2. Amayri S, Arnold T, Reich T, Foerstendorf H, Geipel G, Bernhard G, Massanek A (2004b) Spectroscopic characterization of the uranium carbonate andersonite Na2Ca[UO2(CO3)3] 6H2O. Environ Sci Technol 38:6032–6036PubMedCrossRefGoogle Scholar
  3. Arnold T, Baumann N (2009) Boltwoodite [K(UO2)(SiO3OH)(H2O)1.5] and compreignacite K2[(UO2)3O2(OH)3]2 7H2O characterized by laser fluorescence spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 71:1964–2968PubMedCrossRefGoogle Scholar
  4. Arnold T, Utsunomiya S, Geipel G, Ewing RC, Baumann N, Brendler V (2006) Adsorbed U(VI) surface species on muscovite identified by laser fluorescence spectroscopy and transmission electron microscopy. Environ Sci Technol 40:4646–4652PubMedCrossRefGoogle Scholar
  5. Arnold T, Baumann N, Krawczyk-Bärsch E, Brockmann S, Zimmermann U, Jenk U, Weiß S (2011) Identification of the uranium speciation in an underground acid mine drainage environment. Geochim Cosmochim Acta. 75(8):2200–2212Google Scholar
  6. Baumann N, Brendler V, Arnold T, Geipel G, Bernhard G (2005) Uranyl sorption onto gibbsite studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). J Colloid Interface Sci 290:318–324PubMedCrossRefGoogle Scholar
  7. Baumann N, Arnold T, Geipel G, Trueman E, Black S, Read D (2006) Detection of U(VI) on the surface of altered depleted uranium by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Sci Total Environ 366:905–909CrossRefGoogle Scholar
  8. Baumann N, Arnold T, Foerstendorf H, Read D (2008) Spectroscopic verification of the mineralogy of an ultra-thin mineral film on depleted uranium. Environ Sci Technol 42:8266–8269PubMedCrossRefGoogle Scholar
  9. Bernhard G, Geipel G (2007) Bestimmung der Bindungsform des Urans in Mineralwässern. Vom Wasser 105(3):7–10Google Scholar
  10. Bernhard G, Geipel G, Brendler V, Nitsche H (1998) Uranium speciation in waters of different uranium mining areas. J Alloys Compd 271–273:201–205CrossRefGoogle Scholar
  11. Billard I, Ansoborlo E, Apperson K, Arpigny S, Azenha ME, Birch D, Bros P, Burrows HD, Choppin G, Couston L, Dubois V, Fanghänel T, Geipel G, Hubert S, Kim JI, Kimura T, Klenze R, Kronenberg A, Kumke M, Lagarde G, Lamarque G, Lis S, Madic C, Meinrath G, Nagaishi R, Parker D, Plancque G, Scherbaum F, Simoni E, Sinkov S, Viallesoubranne C (2003) Aqueous solutions of uranium(VI) as studied by time-resolved emission spectroscopy: a round-robin test. Appl Spectrosc 57(8):1027–1038PubMedCrossRefGoogle Scholar
  12. Brendler V, Geipel G, Bernhard G, Nitsche H (1996) Complexation in the system UO22+/PO43−/OH(aq): potentiometric and spectroscopic investigations at very low ionic strengths. Radiochimica Acta 74:75–80Google Scholar
  13. Carrière M, Gouget B, Gallien JP, Avoscan L, Gobin R, Verbavatz JM, Khodja H (2005) Cellular distribution of uranium after acute exposure of renal epithelial cells: SEM, TEM and nuclear microscopy analysis. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms 231:268–273CrossRefGoogle Scholar
  14. Espana JS, Pamo EL, Santofimia E, Aduvire O, Reyes J, Barettino D (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20(7):1320–1356CrossRefGoogle Scholar
  15. Geipel G, Brachmann A, Brendler V, Bernhard G, Nitsche H (1996) Uranium(VI) sulfate complexation studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochimica Acta 75:199–204Google Scholar
  16. Grawunder A, Lonschinski M, Merten D, Büchel G (2009) Distribution and bonding of residual contamination in glacial sediments at the former uranium mining leaching heap of Gessen/Thuringia, Germany. Chemie der Erde – Geochemistry 69:5–19CrossRefGoogle Scholar
  17. Großmann K, Arnold T, Krawczyk-Bärsch E, Diessner S, Wobus A, Bernhard G, Krawietz R (2007) Identification of fluorescent U(V) and U(VI) microparticles in a multispecies biofilm by confocal laser scanning microscopy and fluorescence spectroscopy. Environ Sci Technol 41:6498–6504PubMedCrossRefGoogle Scholar
  18. Großmann K, Arnold T, Ikeda-Ohno A, Steudtner R, Geipel G, Bernhard G (2009) Fluorescence properties of a uranyl(V)-carbonate species [U(V)O2(CO3)3]5− at low temperature. Spectrochim Acta A Mol Biomol Spectrosc 72:449–453PubMedCrossRefGoogle Scholar
  19. Guillaumont R, Fanghänel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. In: OECD Nuclear Energy Agency (ed) Chemical thermodynamics, vol 1. Elsevier, Amsterdam, pp 230–233Google Scholar
  20. Günther A, Bernhard G, Geipel G, Reich T, Roßberg A, Nitsche H (2003) Uranium speciation in plants. Radiochimica Acta 91:319–328CrossRefGoogle Scholar
  21. Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467PubMedCrossRefGoogle Scholar
  22. Haferburg G, Merten D, Büchel G, Kothe E (2007) Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rate earth element patterns in acid mine drainage. J Basic Microbiol 47:474–484PubMedCrossRefGoogle Scholar
  23. Hennig C, Schmeide K, Brendler V, Moll H, Tsushima S, Scheinost AC (2007) EXAFS investigations of U(VI), U(IV), and Th(IV) sulfato complexes in aqueous solution. Inorg Chem 46:5882–5892PubMedCrossRefGoogle Scholar
  24. Hennig C, Ikeda A, Schmeide K, Brendler V, Moll H, Tsushima S, Scheinost AC, Skanthakumar S, Wilson R, Soderholm L, Servaes K, Görrler-Walrand C, van Deun R (2008) The relationship of monodentate and bidentate coordinated uranium(VI) sulphate in aqueous solution. Radiochimica Acta 96:607–611CrossRefGoogle Scholar
  25. Kirishima A, Kimura T, Tochiyama O, Yoshida Z (2003) Luminescence study of tetravalent uranium in aqueous solution. Chem Commun 7:910–911CrossRefGoogle Scholar
  26. Kirishima A, Kimura T, Nagaishi R, Tochiyama O (2004) Luminescence properties of tetravalent uranium in aqueous solution. Radiochimica Acta 92:705–710CrossRefGoogle Scholar
  27. Křepelová A, Brendler V, Sachs S, Baumann N, Bernhard G (2007) U(VI)-kaolinite surface complexation in absence and presence of humic acid studied by TRLFS. Environ Sci Technol 41:6142–6147PubMedCrossRefGoogle Scholar
  28. Merten D, Kothe E, Büchel G (2004) Studies on microbial heavy metal retention from uranium mine drainage water with special emphasis on rare earth elements. Mine Water Environ 23:34–43CrossRefGoogle Scholar
  29. Moulin C, Beaucaire C, Decambox P, Mauchien P (1990) Determination of uranium in solution at the ng L−1 level by time-resolved laser-induced spectrofluorimetry – application to geological samples. Anal Chim Acta 238(2):291–296CrossRefGoogle Scholar
  30. Moulin C, Decambox P, Moulin V, Decaillon JG (1995) Uranium speciation in solution by time-resolved laser-induced fluorescence. Anal Chem 67(2):348–353CrossRefGoogle Scholar
  31. Steudtner R, Arnold T, Großmann K, Geipel G, Brendler V (2006) Luminescence spectrum of uranyl(V) in 2-propanol perchlorate solution. Inorg Chem Commun 9:939–941CrossRefGoogle Scholar
  32. Vercouter T, Vitorge P, Amekraz B, Moulin C (2008) Stoichiometries and thermodynamic stabilities for aqueous sulfate complexes of U(VI). Inorg Chem 47(6):2180–2189PubMedCrossRefGoogle Scholar
  33. Vetešník A, Semelová M, Štamberg K, Vopálka D (2009) Uranium(VI) sulfate complexation as a function of temperature and ionic strength studied by TRLFS. In: Merkel BJ, Hasche-Berger A (eds) Uranium mining and hydrogeology. Springer, Berlin, pp 623–630Google Scholar
  34. Wang Z, Zachara JM, Yantasee W, Gassman PL, Liu C, Joly AG (2004) Cryogenic laser induced fluorescence characterization of U(VI) in Hanford vadose zone pore waters. Environ Sci Technol 38:5591–5597PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nils Baumann
    • 1
  • Thuro Arnold
    • 1
  • Martin Lonschinski
    • 2
  1. 1.Institut für RadiochemieHelmholtz-Zentrum Dresden-RossendorfDresdenGermany
  2. 2.Institute of GeosciencesFriedrich-Schiller UniversityJenaGermany

Personalised recommendations