Geomicrobial Manganese Redox Reactions in Metal-Contaminated Soil Substrates

  • Christian Lorenz
  • Dirk Merten
  • Götz Haferburg
  • Erika Kothe
  • Georg Büchel
Part of the Soil Biology book series (SOILBIOL, volume 31)


Geomicrobial cycles influence metal mobilities in soil. The formation of Fe and Mn(hydr)oxides in biogeochemical horizons and the subsequent mobilization of Mn from the substrate can lead to high mobility of Mn. This process of Mn mobilization was studied in substrates derived from a former uranium mining area in column experiments. Microbially influenced manganese release was investigated in columns with an autochthonous microbial community and columns additionally inoculated with Streptomyces. Additionally, azide-poisoned columns were analyzed. Levels of 1,060 μg l−1 Mn(II) were released from inoculated columns while batch experiments led to elution of up to 28 μg l−1 Mn(II). The microbial influence on element cycling correlated with decreasing redox potentials. To study the potential of microbial reduction processes, strains isolated from these columns were investigated. One prominent bacterium, identified as Cupriavidus metallidurans, tolerated up to 30 mM Mn(II). However, no aerobic microbial Mn reduction was found indicating that Mn release was either dependent on anaerobic conditions, or microbial respiration initiated abiotic Mn reduction by decreasing the redox potential necessary for these processes.


Total Organic Carbon Total Organic Carbon Concentration Waste Rock Pilis Initial Total Organic Carbon Decrease Redox Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Ulrike Buhler, Ines Kamp, Gundula Rudolph and Gerit Weinzierl for technical assistance. This work was supported by the German Federal Ministry of Education & Research grant no. 02S8294 KOBIOGEO and JSMC through the DFG Research Training Group 1257.


  1. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J (1996) Classification of bacteria islolated from a medieval wall painting. J Biotechnol 47:39–52CrossRefGoogle Scholar
  2. Atlas RM, Bartha R (1992) Microbial ecology: fundamentals and applications. The Benjamin Cummings, Redwood City, CAGoogle Scholar
  3. Amoroso MJ, Schubert D, Mitscherlich P, Schumann P, Kothe E (2000) Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces sp. J Basic Microbiol 40:295–301PubMedCrossRefGoogle Scholar
  4. Bratina BJ, Stevenson BS, Green WJ, Schmidt TM (1998) Manganese reduction by microbes from oxic regions of the Lake Vanda (Antarctica) Water Column. Appl Environ Microbiol 64:3791–3797PubMedGoogle Scholar
  5. Burdige DJ, Nealson KH (1985) Microbial manganese reduction by enrichment cultures from coastal marine sediments. Appl Environ Microbiol 50:491–497PubMedGoogle Scholar
  6. DIN ISO 11260:1997–05: Determination of effective cation exchange capacity and base saturation level using barium chloride solution. In: Deutsches Institut für Normung (DIN) (ed) Handbuch der Bodenuntersuchung, Beuth Verlag, BerlinGoogle Scholar
  7. DIN 19684-1:1977–02 Methods of soil investigations for agricultural engineering; chemical laboratory tests; determination of pH-value of the soil and lime requirement. In: Deutsches Institut für Normung (DIN) (ed) Handbuch der Bodenuntersuchung, Beuth Verlag, BerlinGoogle Scholar
  8. Di-Ruggiero J, Gounot A-M (1990) Microbial manganese reduction mediated by bacterial strains isolated from aquifer sediments. Microb Ecol 20:53–63CrossRefGoogle Scholar
  9. Gounot A-M (1994) Microbial oxidation and reduction of manganese: consequences in groundwater and applications. FEMS Microbiol Rev 14:339–349PubMedCrossRefGoogle Scholar
  10. Grawunder A, Lonschinski M, Merten D, Büchel G (2009) Distribution and bonding of the residual contamination in the glacial sediments at the former uranium mining leaching heap of Gessen/Thuringia. Chem Erde 69:5–19CrossRefGoogle Scholar
  11. Haferburg G, Reinicke M, Merten D, Büchel G, Kothe E (2007) Microbes adapted to acid mine drainage as source for strains active in retention of aluminum or uranium. J Geochem Explor 92:196–204CrossRefGoogle Scholar
  12. Jakubick AT, Gatzweiler R, Mager D, Robertson AM (1997) The Wismut waste rock pile remediation program of the Ronneburg mining district, Germany. In: Fourth international conference acid rock drainage, Vancouver, BC, Canada, May 31–June 6, 1997, vol III. pp 1285–1301Google Scholar
  13. Kashem MA, Singh BR (2001) Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutr Cycl Agroecosyst 61:247–255CrossRefGoogle Scholar
  14. Khattack RA, Page AL (1992) Mechanism of manganese adsorption on soil constituents. In: Adriano DC (ed) Biogeochemistry of trace metals. Lewis, Boca Raton, FL, pp 383–400Google Scholar
  15. Kothe E, Bergmann H, Büchel G (2005) Molecular mechanisms in bio-geo-interactions: from a case study to general mechanisms. Chem Erde 65:7–27CrossRefGoogle Scholar
  16. Lovley DR (1991) Dissimilatory Fe (III) and Mn (IV) reduction. Microbiol Rev 55:259–287PubMedGoogle Scholar
  17. Marre D (2003) Untersuchungen zum Vorkommen und Transportverhalten von Partikeln in Grundwässern und Abschätzung ihrer Relevanz für den Schadstofftransport. Ph.D. thesis, Technical University DresdenGoogle Scholar
  18. McKenzie RM (1989) Manganese oxides and hydroxides. In: Dixon J, Weed S (eds) Minerals in soil environments. Soil Science Society of America, Madison, WI, pp 439–465Google Scholar
  19. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334PubMedGoogle Scholar
  20. Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specially adapted to toxic metals: towards a tentative catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410PubMedCrossRefGoogle Scholar
  21. Merten D, Büchel G, Kothe E (2004) Studies on microbial heavy metal retention from uranium mining drainage water with special emphasis on rare earth elements. Mine Water Environ 23:34–43CrossRefGoogle Scholar
  22. Merten D, Geletneky J, Bergmann H, Haferburg G, Kothe E, Büchel G (2005) Rare earth element patterns: a tool for understanding processes in remediation of acid mine drainage. Chem Erde 65:97–114CrossRefGoogle Scholar
  23. Nealson KH, Myers CR (1992) Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl Environ Microbiol 58:439–443PubMedGoogle Scholar
  24. Nealson KH, Saffarini D (1994) Iron and manganese in anaerobic respiration. Annu Rev Microbiol 48:311–343PubMedCrossRefGoogle Scholar
  25. Nies DH (1992) Resistance to cadmium, cobalt, zinc, nickel in microbes. Plasmid 27:17–28PubMedCrossRefGoogle Scholar
  26. Ridge EH, Rovira AD (1971) Phosphatase activity of intact young wheat roots under sterile and nonsterile conditions. New Phytol 70:1017–1026CrossRefGoogle Scholar
  27. Rüger F, Dietel W (1998) Vier Jahrzehnte Uranerzbau um Ronneburg. Lapis 98:65–74Google Scholar
  28. Schindler F (2007) Untersuchungen zur mikrobiellen Aktivität und Diversität im Bereich des schwermetallbelasteten Testfelds “Gessenwiese”. M.Sc. thesis, Friedrich Schiller University JenaGoogle Scholar
  29. Schmidt A, Haferburg G, Sineriz M, Merten D, Büchel G, Kothe E (2005) Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chem Erde 65:131–144CrossRefGoogle Scholar
  30. Sposito G (1989) The Chemistry of Soils. Oxford University Press, New YorkGoogle Scholar
  31. Tack FMG, van Ranst E, Lievens C, Vandenberghe RE (2006) Soil solution Cd, Cu and Zn concentrations as affected by short-time drying or wetting: The role of hydrous oxides of Fe and Mn. Geoderma 137:83–89CrossRefGoogle Scholar
  32. Thiemann JE, Pagani H, Beretta G (1968) A new genus of the Actinomycetales: Microtetraspora gen. nov. J Gen Microbiol 50:295–303PubMedGoogle Scholar
  33. Trimble RB, Ehrlich HL (1970) Bacteriology of manganese nodules: IV. Induction of an MnO2-reductase system in a marine Bacillus. Appl Environ Microbiol 19:966–972Google Scholar
  34. Van Keulen G, Jonkers HM, Claessen D, Dijkhuizen L, Wosten HAB (2003) Differentiation and anaerobiosis in standing liquid cultures of Streptomyces coelicolor. J Bacteriol 185:1455–1458PubMedCrossRefGoogle Scholar
  35. Van Keulen G, Alderson J, White J, Sawers RG (2007) The obligate aerobic actinomycete Streptomyces coelicolor A3(2) survives extended periods of anaerobic stress. Environ Microbiol 9:3143–3149PubMedCrossRefGoogle Scholar
  36. Vandenabeele J, de Beer D, Germonpre R, Van de Sande R, Verstraete W (1995) Influence of nitrate on manganese removing microbial consortia from sand filters. Water Res 29:579–587CrossRefGoogle Scholar
  37. Wieder RK, Lang GE (1986) Fe, Al, Mn, and S chemistry of Sphagnum peat in four peatlands with different metal and sulfur input. Water Air Soil Pollut 29:309–320CrossRefGoogle Scholar
  38. Wieder RK, Linton MN (1990) Laboratory mesocosm studies of Fe, Al, Mn, Ca, and Mg dynamics in wetlands exposed to synthetic acid coal mine drainage. Water Air Soil Pollut 51:181–196CrossRefGoogle Scholar
  39. Xiang HF, Banin A (1996) Solid-phase manganese fractionation changes in saturated arid-zone soils: pathways and kinetics. Soil Sci Soc Am J 60:1072–1080CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Lorenz
    • 1
  • Dirk Merten
    • 2
  • Götz Haferburg
    • 3
  • Erika Kothe
    • 3
  • Georg Büchel
    • 2
  1. 1.Chair of Environmental GeologyBrandenburg Technical UniversityCottbusGermany
  2. 2.Institute of Earth SciencesFriedrich-Schiller-University JenaJenaGermany
  3. 3.Institute of MicrobiologyFriedrich-Schiller-University JenaJenaGermany

Personalised recommendations