Advertisement

Mycorrhizal-Based Phytostabilization of Zn–Pb Tailings: Lessons from the Trzebionka Mining Works (Southern Poland)

  • Katarzyna TurnauEmail author
  • Stefan Gawroński
  • Przemysław Ryszka
  • Douglas Zook
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 31)

Abstract

The chapter summarizes the research on the role of mycorrhiza in phytostabilization of heavy-metal-rich tailings from the ZG Trzebionka (southern Poland) industrial sites. The deposited substratum is difficult to phytoremediate. For example, plants conventionally introduced in such places disappear relatively soon, while those appearing during natural succession replace them. Properly developed mycorrhizal symbiosis enhances the survival of plants in such metal-rich areas by improving both nutrient acquisition and water relations. Moreover, mycorrhizal fungi were also found to play an important role in heavy metal detoxification and the establishment of vegetation. Certain fungal strains isolated from old zinc wastes also decrease heavy metal uptake by plants which grow on metal-rich substrates, thus limiting the risk of increasing the levels of these elements into the food chain. Mycorrhizal fungi isolated from the area were shown to be more effective in plant growth enhancement than those from nonpolluted area. Therefore, the effectiveness of the bioremediation techniques depends on the appropriate selection of both the plant and the fungal partners.

Keywords

Heavy Metal Arbuscular Mycorrhizal Fungus Mycorrhizal Fungus Industrial Waste Mycorrhizal Colonization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This chapter was written within the framework of the Project UMBRELLA (EU FP7 no 226870).

References

  1. Adjoud D, Plenchette C, Halli-Hargas R, Lapeyrie F (1996) Response of 11 eucalyptus species to inoculation with three arbuscular mycorrhizal fungi. Mycorrhiza 6:129–135CrossRefGoogle Scholar
  2. Ahsan N, Lee DG, Lee SH, Kang KY, Lee JJ, Kim PJ, Yoon HS, Kim JS, Lee BH (2007) Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67:1182–93PubMedCrossRefGoogle Scholar
  3. Barea JM, Werner D, Azcon-Guilar C, Azcon R (2005) Interactions of Arbuscular Mycorrhiza and Nitrogen-Fixing Symbiosis in Sustainable Agriculture. In: Werner D, Newton W (eds) Nitrogen fixation in agriculture, forestry, ecology, and the environment. nitrogen fixation: origins, applications, and research progress, vol 4, pp 199–222Google Scholar
  4. Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ (2003) Variation in the shoot calcium concentration of angiosperms. J Exp Bot 54:1431–1446PubMedCrossRefGoogle Scholar
  5. Buwalda JG, Goh KM (1982) Host fungus competition for carbon as a cause of growth depression in vesicular-arbuscular mycorrhizal ryegrass. Soil Biol Biochem 14:103–106CrossRefGoogle Scholar
  6. Cardinale M, Brusetti L, Lanza A, Orlando S, Daffonchio D, Puglia AM, Quatrini P (2010) Rehabilitation of Mediterranean anthropogenic soils using symbiotic wild legume shrubs: plant establishment and impact on the soil bacterial community structure. Appl Soil Ecol 46:1–8CrossRefGoogle Scholar
  7. Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, Lopez R (2005) Isolation and characterization of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biol Biochem 37:1131–1140CrossRefGoogle Scholar
  8. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneis: roles in heavy metal detoxification and homeostatsis. Ann Rev Plant Physiol Plant Mol Biol 53:159–182CrossRefGoogle Scholar
  9. Dashti N, Khanafer M, El-Nemr I, Sorkhoh N, Radwan S (2009) The potential of oil utilizing bacterial consortia associated with legume root nodules for cleaning oily soil. Chemosphere 74:1354–9PubMedCrossRefGoogle Scholar
  10. Dauber J, Niechoj R, Baltruschat H, Wolters V (2008) Soil engineering ants increase grass root arbuscular mycorrhizal colonization. Biol Fert Soils 44:791–796CrossRefGoogle Scholar
  11. Dodd JC, Dougall TA, Clapp JP, Jeffries P (2002) The role of arbuscular mycorrhizal fungi in plant community establishment at Samphire Hoe, Kent, UK – the reclamation platform created during the building of the Channel tunnel between France and the UK. Biodivers Conserv 11:39–58CrossRefGoogle Scholar
  12. Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248Google Scholar
  13. Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Ann Rev Plant Physiol 29:511–566CrossRefGoogle Scholar
  14. Gadkar V, Driver JD, Rillig MC (2006) A novel in vitro cultivation system to produce and isolate soluble factors released from hyphae of arbuscular mycorrhizal fungi. Biotechnol Lett 28:1071–1076PubMedCrossRefGoogle Scholar
  15. Gianinazzi-Pearson V, Gianinazzi S (1983) The physiology of vesicular-arbuscular mycorrhizal roots. Plant Soil 71:197–209CrossRefGoogle Scholar
  16. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11PubMedCrossRefGoogle Scholar
  17. Hamelin J, Fromin N, Tarnawski S, Teyssier-Cuvelle S, Aragno M (2002) nifH gene diversity in the bacterial community associated with the rhizosphere of Molinia coerulea, an oligonitrophilic perennial grass. Environ Microbiol 4:477–481PubMedCrossRefGoogle Scholar
  18. Harinikumar KM, Bagyaraj DJ (1994) Potential of earthworms, ants, millipedes, and termites for dissemination of vesicular-arbuscular mycorrhizal fungi in soil. Biol Fert Soils 18:115–118CrossRefGoogle Scholar
  19. Harper JL (1977) Population biology of plants. Academic, LondonGoogle Scholar
  20. Janouskova M, Pavlikova D, Vosatka M (2006) Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere 65:1959–1965PubMedCrossRefGoogle Scholar
  21. Jastrow JD, Miller RM, Lussenhop J (1998) Contributions of interacting biological mechanisms to soil aggregate atabilization in restored prairie. Soil Biol Biochem 30:905–916CrossRefGoogle Scholar
  22. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J-M (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fert Soils 37:1–16Google Scholar
  23. Jónsdóttir IS, Watson MA (1997) Extensive physiological integration: an adaptive trait in resource poor environments? In: de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys, Leiden, The Netherlands, pp 109–136Google Scholar
  24. Joner EJ, Leyval C (1997) Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 138:353–360CrossRefGoogle Scholar
  25. Jurkiewicz A, Orłowska E, Anielska T, Godzik B, Turnau K (2004) The influence of mycorrhiza and EDTA application on heavy metal uptake by different maize varieties. Acta Biol Cracov Bot 46:7–18Google Scholar
  26. Jurkiewicz A, Turnau K, Mesjasz-Przybylowicz J, Przybylowicz W, Godzik B (2001) Heavy metal localization in mycorrhizas of Epipactis atropurpureum (Orchidaceae) from zinc wastes in Poland. Protoplasma 218:117–124PubMedCrossRefGoogle Scholar
  27. Kabata-Pendias A (2001) Trace elements in soils and plants, 3rd edn. CRC, Boca Raton, London, New York, Washington, D.C., pp. 413Google Scholar
  28. Kays S, Harper JL (1974) The regulation of plant and tiller density in a grass sward. J Ecol 62:97–105CrossRefGoogle Scholar
  29. Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19CrossRefGoogle Scholar
  30. Kopittke PM, Dart PJ, Menzies NW (2007) Toxic effects of low concentrations of Cu on nodulation of cowpea (Vigna unguiculata). Environ Pollut 145:309–315PubMedCrossRefGoogle Scholar
  31. Lafuente A, Pajuelo E, Caviedes MA, Rodriguez-Llorente ID (2010) Reduced nodulation in alfalfa induced by arsenic correlates with altered expression of early nodulins. J Plant Physiol 167:286–291PubMedCrossRefGoogle Scholar
  32. Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New York, pp 1–604CrossRefGoogle Scholar
  33. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153CrossRefGoogle Scholar
  34. Lis J, Pasieczna A (1998) Kartografia geochemiczna obszarów zurbanizowanych i uprzemysłowionych. In: Kozłowski S (ed) Ochrona litosfery. Państwowy Instytut Geolologiczny, Warszawa, pp 248–252Google Scholar
  35. Marshall C, Price EAC (1997) Sectoriality and its implications for physiological integration. In: de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys, Leiden, The Netherlands, pp 79–107Google Scholar
  36. Mleczko P (2004) Mycorrhizal and saprobic macrofungi of two zinc wastes in southern Poland. Acta Biol Cracov Bot 46:25–38Google Scholar
  37. Newsham KK, Watkinson AR (1998) Arbuscular mycorrhizas and the population biology of grasses. In: Cheplick GP (ed) Population biology of grasses. Cambridge University Press, Cambridge, UK, pp 286–310CrossRefGoogle Scholar
  38. Nye PH, Tinker PB (1977) Solute movement in the soil-root system. Studies in ecology, vol 4. Blackwell Scientific, OxfordGoogle Scholar
  39. Orłowska E, Jurkiewicz A, Anielska T, Godzik B, Turnau K (2005) Influence of different arbuscular mycorrhizal fungal (AMF) strains on heavy metal uptake by Plantago lanceolata L. Pol Bot Stud 19:65–72Google Scholar
  40. Pajuelo E, Rodriguez-Llorente ID, Dary M, Palomeres AJ (2008) Toxic effects of arsenic on Sinorhizobium-Medicago sativa symbiotic interaction. Environ Pollut 154:2003–2011CrossRefGoogle Scholar
  41. Pielichowska M, Wierzbicka M (2004) The uptake and localization of cadmium by Biscutella laevigata – a cadmium hyperaccumulator. Acta Biol Cracov Bot 46:57–64Google Scholar
  42. Pierzynski GM, Sims JT, Vance GF (2000) Soil and environmental quality, 2nd edn. CRC, Boca Raton, FLGoogle Scholar
  43. Pozo M, Azcon-Aguilar C (2007) Unraveling mycorrhiza induced resistance. Curr Opin Plant Biol 10:393–398PubMedCrossRefGoogle Scholar
  44. Purin S, Rillig MC (2008) Immuno-cytolocalization of glomalin in the mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. Soil Biol Biochem 40:1000–1003CrossRefGoogle Scholar
  45. Rascio N (1977) Metal accumulation by some plants growing on zinc-mine deposits. Oikos 29:250–253CrossRefGoogle Scholar
  46. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53PubMedCrossRefGoogle Scholar
  47. Rillig MC, Mardatin NF, Leifheit EF, Antunes PM (2010) Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biol Biochem 42:1189–1191CrossRefGoogle Scholar
  48. Ryszka P (2006) Mikoryza traw hałdy ZG Trzebionka. Ph.D. thesis, Faculty of Biology and Earth Sciences, Jagiellonian University, Kraków, PolandGoogle Scholar
  49. Ryszka P, Turnau K (2007) Arbuscular mycorrhiza of introduced and native grasses colonizing zinc wastes: implications for restoration practices. Plant Soil 298:219–229CrossRefGoogle Scholar
  50. Shaw BI, Mantle PG (1980) Host infection by Claviceps purpurea. Trans Br Mycol Soc 75:77–90CrossRefGoogle Scholar
  51. Smith MR, Charvat I, Jacobson RL (1998) Arbuscular mycorrhizae promote establishment of prairie species in a tallgrass prairie restoration. Can J Bot 76:1947–1954Google Scholar
  52. Streitwolf-Engel R, van Der Heijden MGA, Wiemken A, Sanders IR (2001) The ecological significance of arbuscular mycorrhizal fungal effects on clonal reproduction in plants. Ecology 82:2846–2859CrossRefGoogle Scholar
  53. Strzyszcz Z (1980) Właściwości fizyczne, fizyko-chemiczne i chemiczne odpadów poflotacyjnych rud cynku i ołowiu w aspekcie ich biologicznej rekultywacji (Physical, physical-chemical and chemical properties of wastes after flotation of zinc and lead ores with regard to their biological reclamation). Archiwum Ochrony Środowiska 3–4:19–50Google Scholar
  54. Strzyszcz Z (2003) Some problems of the reclamation of waste heaps of zinc and lead ore exploitation in southern Poland. Z Geol Wiss, Berlin 31:167–173Google Scholar
  55. Szafer W (ed) (1966) The vegetation of Poland. Pergamon, OxfordGoogle Scholar
  56. Szuwarzyński M (2000) Zakłady Górnicze “Trzebionka” S.A. 1950–2000, Przedsiębiorstwo Doradztwa Technicznego ”Kadra”, Krakow, PolandGoogle Scholar
  57. Tsimilli-Michael M, Turnau K, Ostachowicz B, Strasser RJ (2008) Effect of mycorrhiza on the photosynthetic performance of Medicago sativa L. cultivated on control and heavy rich substratum, studied in vivo with the JIP-test. COST 870 Meeting "From production to application of arbuscular mycorrhizal fungi in aqricultural systems: a multidisciplinary approach, 17–19 September 2008, Thessaloniki, Greece, pp 80–83Google Scholar
  58. Turnau K (1998) Heavy metal uptake and arbuscular mycorrhiza development of Euphorbia cyparissias on zinc wastes in South Poland. Acta Soc Bot Pol 67(1):105–113Google Scholar
  59. Turnau K, Anielska T, Ryszka P, Gawronski S, Ostachowicz B, Jurkiewicz A (2008) Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes – new solution for waste revegetation. Plant Soil 305:267–280CrossRefGoogle Scholar
  60. Turnau K, Jurkiewicz A, Lingua G, Barea JM, Gianinazzi-Pearson V (2006) Role of arbuscular mycorrhiza and associated microorganisms in phytoremediation of heavy metal-polluted sites. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment. Biogeochemistry, biotechnology, and bioremediation. Taylor & Francis, Boca Raton, pp 235–252Google Scholar
  61. Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190PubMedCrossRefGoogle Scholar
  62. Turnau K, Ostachowicz B, Wojtczak G, Anielska T, Sobczyk Ł (2010) Metal uptake by xerothermic plants introduced into Zn-Pb industrial wastes. Plant Soil; DOI:  10.1007/s11104-010-0527-7
  63. Turnau K, Ryszka P, Gianinazzi-Pearson V, van Tuinen D (2001) Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in Southern Poland. Mycorrhiza 10:169–174CrossRefGoogle Scholar
  64. van der Heijden MGA, Wiemken A, Sanders IR (1998) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytol 157:569–578CrossRefGoogle Scholar
  65. van der Heijden MGA (2002) Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search for underlying mechanisms and general principles. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Ecological studies, vol 157. Springer, Heidelberg, pp 243–265Google Scholar
  66. Wierzbicka M, Panufnik D (1998) The adaptation of Silene vulgaris to growth on a calamine waste heap (S. Poland). Environ Pollut 101:415–426CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Katarzyna Turnau
    • 1
    Email author
  • Stefan Gawroński
    • 2
  • Przemysław Ryszka
    • 1
  • Douglas Zook
    • 3
  1. 1.Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
  2. 2.Institute of BotanyJagiellonian UniversityKrakówPoland
  3. 3.Boston UniversityBostonUSA

Personalised recommendations