Promoting Divergent Terms in the Estimation of Relevance Models

  • Javier Parapar
  • Álvaro Barreiro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6931)

Abstract

Traditionally the use of pseudo relevance feedback (PRF) techniques for query expansion has been demonstrated very effective. Particularly the use of Relevance Models (RM) in the context of the Language Modelling framework has been established as a high-performance approach to beat. In this paper we present an alternative estimation for the RM promoting terms that being present in the relevance set are also distant from the language model of the collection. We compared this approach with RM3 and with an adaptation to the Language Modelling framework of the Rocchio’s KLD-based term ranking function. The evaluation showed that this alternative estimation of RM reports consistently better results than RM3, showing in average to be the most stable across collections in terms of robustness.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdul-Jaleel, N., Allan, J., Croft, W.B., Diaz, O., Larkey, L., Li, X., Smucker, M.D., Wade, C.: UMass at trec 2004: Novelty and hard. In: Proceedings of TREC-13 (2004)Google Scholar
  2. 2.
    Amati, G., Van Rijsbergen, C.J.: Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Trans. Inf. Syst. 20, 357–389 (2002)CrossRefGoogle Scholar
  3. 3.
    Balasubramanian, N., Allan, J., Croft, W.B.: A comparison of sentence retrieval techniques. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2007, pp. 813–814. ACM, New York (2007)Google Scholar
  4. 4.
    Carpineto, C., de Mori, R., Romano, G., Bigi, B.: An information-theoretic approach to automatic query expansion. ACM Trans. Inf. Syst. 19(1), 1–27 (2001)CrossRefGoogle Scholar
  5. 5.
    Collins-Thompson, K., Callan, J.: Estimation and use of uncertainty in pseudo-relevance feedback. In: SIGIR 2007: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 303–310. ACM, New York (2007)Google Scholar
  6. 6.
    Croft, W.B., Harper, D.: Using probabilistic models of document retrieval without relevance information. Journal of Documentation 35, 285–295 (1979)CrossRefGoogle Scholar
  7. 7.
    Croft, W.B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in Practice, 1st edn. Addison-Wesley Publishing Company, USA (2009)Google Scholar
  8. 8.
    Doszkocs, T.: Id, an associative interactive dictionary for online searching. Online Review 2, 163–173 (1978)CrossRefGoogle Scholar
  9. 9.
    He, B., Ounis, I.: Combining fields for query expansion and adaptive query expansion. Inf. Process. Manage. 43, 1294–1307 (2007)CrossRefGoogle Scholar
  10. 10.
    Lavrenko, V., Croft, W.B.: Relevance based language models. In: SIGIR 2001: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 120–127. ACM, New York (2001)Google Scholar
  11. 11.
    Lee, K.S., Croft, W.B., Allan, J.: A cluster-based resampling method for pseudo-relevance feedback. In: SIGIR 2008: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 235–242. ACM, New York (2008)Google Scholar
  12. 12.
    Li, X., Zhu, Z.: Enhancing relevance models with adaptive passage retrieval. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 463–471. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Lv, Y., Zhai, C.: Adaptive relevance feedback in information retrieval. In: Proceeding of the 18th ACM Conference on Information and Knowledge Management, CIKM 2009, pp. 255–264. ACM, New York (2009)Google Scholar
  14. 14.
    Lv, Y., Zhai, C.: A comparative study of methods for estimating query language models with pseudo feedback. In: Proceeding of the 18th ACM Conference on Information and Knowledge Management, CIKM 2009, pp. 1895–1898. ACM, New York (2009)Google Scholar
  15. 15.
    Robertson, S.E.: On term selection for query expansion. J. Doc. 46, 359–364 (1991)CrossRefGoogle Scholar
  16. 16.
    Rocchio, J.: Relevance feedback in information retrieval. In: The SMART Retrieval System, pp. 313–323 (1971)Google Scholar
  17. 17.
    Ruthven, I., Lalmas, M.: A survey on the use of relevance feedback for information access systems. Knowl. Eng. Rev. 18(2), 95–145 (2003)CrossRefGoogle Scholar
  18. 18.
    Sakai, T., Manabe, T., Koyama, M.: Flexible pseudo-relevance feedback via selective sampling. ACM Transactions on Asian Language Information Processing (TALIP) 4(2), 111–135 (2005)CrossRefGoogle Scholar
  19. 19.
    Salton, G.: The SMART Retrieval System: Experiments in Automatic Document Processing. Prentice-Hall, Inc., Upper Saddle River (1971)Google Scholar
  20. 20.
    Tao, T., Zhai, C.: Regularized estimation of mixture models for robust pseudo-relevance feedback. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2006, pp. 162–169. ACM, New York (2006)Google Scholar
  21. 21.
    Xu, J., Croft, W.B.: Query expansion using local and global document analysis. In: SIGIR 1996: Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 4–11. ACM, New York (1996)CrossRefGoogle Scholar
  22. 22.
    Ye, Z., He, B., Huang, X., Lin, H.: Revisiting rocchios relevance feedback algorithm for probabilistic models. In: Cheng, P.-J., Kan, M.-Y., Lam, W., Nakov, P. (eds.) AIRS 2010. LNCS, vol. 6458, pp. 151–161. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Zhai, C., Lafferty, J.: Model-based feedback in the language modeling approach to information retrieval. In: Proceedings of the Tenth International Conference on Information and Knowledge Management, CIKM 2001, pp. 403–410. ACM, New York (2001)CrossRefGoogle Scholar
  24. 24.
    Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to information retrieval. ACM Trans. Inf. Syst. 22(2), 179–214 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Javier Parapar
    • 1
  • Álvaro Barreiro
    • 1
  1. 1.IRLab, Computer Science DepartmentUniversity of A CoruñaSpain

Personalised recommendations