Aggregated Search Result Diversification
Abstract
Search result diversification has been effectively employed to tackle query ambiguity, particularly in the context of web search. However, ambiguity can manifest differently in different search verticals, with ambiguous queries spanning, e.g., multiple place names, content genres, or time periods. In this paper, we empirically investigate the need for diversity across four different verticals of a commercial search engine, including web, image, news, and product search. As a result, we introduce the problem of aggregated search result diversification as the task of satisfying multiple information needs across multiple search verticals. Moreover, we propose a probabilistic approach to tackle this problem, as a natural extension of state-of-the-art diversification approaches. Finally, we generalise standard diversity metrics, such as ERR-IA and α-nDCG, into a framework for evaluating diversity across multiple search verticals.
Keywords
Search Result Product Search Information Retrieval Evaluation Commercial Search Engine Query AmbiguityPreview
Unable to display preview. Download preview PDF.
References
- 1.Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: WSDM, pp. 5–14 (2009)Google Scholar
- 2.Arguello, J., Diaz, F., Callan, J., Crespo, J.F.: Sources of evidence for vertical selection. In: SIGIR, pp. 315–322 (2009)Google Scholar
- 3.Bailey, P., Craswell, N., White, R.W., Chen, L., Satyanarayana, A., Tahaghoghi, S.: Evaluating whole-page relevance. In: SIGIR, pp. 767–768 (2010)Google Scholar
- 4.Beitzel, S.M., Jensen, E.C., Lewis, D.D., Chowdhury, A., Frieder, O.: Automatic classification of web queries using very large unlabeled query logs. ACM Trans. Inf. Syst. 25(9) (2007)Google Scholar
- 5.Callan, J.: Distributed information retrieval. In: Croft, W.B. (ed.) Advances in Information Retrieval, ch. 5, pp. 127–150. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
- 6.Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: SIGIR, pp. 335–336 (1998)Google Scholar
- 7.Carterette, B.: An analysis of NP-completeness in novelty and diversity ranking. In: Azzopardi, L., Kazai, G., Robertson, S., Rüger, S., Shokouhi, M., Song, D., Yilmaz, E. (eds.) ICTIR 2009. LNCS, vol. 5766, pp. 200–211. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 8.Chapelle, O., Metlzer, D., Zhang, Y., Grinspan, P.: Expected reciprocal rank for graded relevance. In: CIKM, pp. 621–630 (2009)Google Scholar
- 9.Chen, H., Karger, D.R.: Less is more: probabilistic models for retrieving fewer relevant documents. In: SIGIR, pp. 429–436 (2006)Google Scholar
- 10.Clarke, C.L.A., Craswell, N., Soboroff, I.: Overview of the TREC 2009 Web track. In: TREC (2009)Google Scholar
- 11.Clarke, C.L.A., Craswell, N., Soboroff, I., Ashkan, A.: A comparative analysis of cascade measures for novelty and diversity. In: WSDM, pp. 75–84 (2011)Google Scholar
- 12.Clarke, C.L.A., Craswell, N., Soboroff, I., Cormack, G.V.: Overview of the TREC 2010 Web track. In: TREC (2010)Google Scholar
- 13.Clarke, C.L.A., Kolla, M., Cormack, G.V., Vechtomova, O., Ashkan, A., Büttcher, S., MacKinnon, I.: Novelty and diversity in information retrieval evaluation. In: SIGIR, pp. 659–666 (2008)Google Scholar
- 14.Damak, F., Kopliku, A., Pinel-Sauvagnat, K., Boughanem, M.: A user study to evaluate the utility of verticality and diversity in aggregated search. Tech. Rep. 2, IRIT (2010)Google Scholar
- 15.Deselaers, T., Gass, T., Dreuw, P., Ney, H.: Jointly optimising relevance and diversity in image retrieval. In: CIVR, pp. 1–8 (2009)Google Scholar
- 16.Diaz, F.: Integration of news content into web results. In: WSDM, pp. 182–191 (2009)Google Scholar
- 17.Diaz, F., Arguello, J.: Adaptation of offline vertical selection predictions in the presence of user feedback. In: SIGIR, pp. 323–330 (2009)Google Scholar
- 18.Diaz, F., Lalmas, M., Shokouhi, M.: From federated to aggregated search. In: SIGIR, p. 910 (2010)Google Scholar
- 19.Gollapudi, S., Sharma, A.: An axiomatic approach for result diversification. In: WWW, pp. 381–390 (2009)Google Scholar
- 20.Hand, D.J., Smyth, P., Mannila, H.: Principles of data mining. MIT Press, Cambridge (2001)Google Scholar
- 21.Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. Inf. Proc. Lett. 70(1), 39–45 (1999)MathSciNetCrossRefMATHGoogle Scholar
- 22.van Leuken, R.H., Garcia, L., Olivares, X., van Zwol, R.: Visual diversification of image search results. In: WWW, pp. 341–350 (2009)Google Scholar
- 23.Murdock, V., Lalmas, M.: Workshop on aggregated search. SIGIR Forum 42, 80–83 (2008)CrossRefGoogle Scholar
- 24.Paramita, M.L., Tang, J., Sanderson, M.: Generic and spatial approaches to image search results diversification. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 603–610. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 25.Ponnuswami, A.K., Pattabiraman, K., Wu, Q., Gilad-Bachrach, R., Kanungo, T.: On composition of a federated web search result page: using online users to provide pairwise preference for heterogeneous verticals. In: WSDM, pp. 715–724 (2011)Google Scholar
- 26.Rafiei, D., Bharat, K., Shukla, A.: Diversifying Web search results. In: WWW, pp. 781–790 (2010)Google Scholar
- 27.Santos, R.L.T., Macdonald, C., Ounis, I.: Exploiting query reformulations for Web search result diversification. In: WWW, pp. 881–890 (2010)Google Scholar
- 28.Song, R., Luo, Z., Nie, J.Y., Yu, Y., Hon, H.W.: Identification of ambiguous queries in Web search. Inf. Process. Manage. 45(2), 216–229 (2009)CrossRefGoogle Scholar
- 29.Spärck-Jones, K., Robertson, S.E., Sanderson, M.: Ambiguous requests: implications for retrieval tests, systems and theories. SIGIR Forum 41(2), 8–17 (2007)CrossRefGoogle Scholar
- 30.Sushmita, S., Joho, H., Lalmas, M., Villa, R.: Factors affecting click-through behavior in aggregated search interfaces. In: CIKM, pp. 519–528 (2010)Google Scholar
- 31.Vee, E., Srivastava, U., Shanmugasundaram, J., Bhat, P., Yahia, S.A.: Efficient computation of diverse query results. In: ICDE, pp. 228–236 (2008)Google Scholar
- 32.Wang, J., Zhu, J.: Portfolio theory of information retrieval. In: SIGIR, pp. 115–122 (2009)Google Scholar
- 33.Zhai, C., Cohen, W.W., Lafferty, J.: Beyond independent relevance: methods and evaluation metrics for subtopic retrieval. In: SIGIR, pp. 10–17 (2003)Google Scholar